You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Hybrid Modeling Capability for Aircraft Electrical Propulsion Systems

    SBC: PC KRAUSE & ASSOCIATES INC            Topic: T1501

    PC Krause and Associates is partnering with Purdue University, EleQuant, and GridQuant to create a hybrid modeling capability. The combination of PCKA?s extensive dynamic modeling experience, Purdue?s work in electromechanical systems analysis, and GridQuant and Elequant?s development of the HELM algorithm uniquely positions the team to create this technology. HELM is a novel algorithm that solves ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  2. Modular Embedded Intelligent Sensor Network

    SBC: Angstrom Designs, Inc.            Topic: T1301

    Remote sensing, when combined with real-time processing, provides instant feedback on safety, mission success and system health. Being able to combine embedded sensing with distributed networks gives us the additional potential to further benefit many systems and sub-systems in the aerospace industry including launch vehicles, ground test equipment and spacecraft. These remote distributed sensor ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  3. The Small Mixed Field Autonomous Radiation Tracker (SMART) Dosimeter

    SBC: RADIATION MONITORING DEVICES, INC.            Topic: T602

    Active dosimeters for astronauts and space weather monitors are critical tools for mitigating radiation induced health issues or system failure on capital equipment. Commercial spaceflight, deep space flight, and satellites require smarter, smaller, and lower power dosimeters. There are a number of instruments with flight heritage, yet as identified in NASA's roadmaps, this technology does not l ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  4. Low Mass/Power Sensor Suite for Spacesuits

    SBC: SEACOAST SCIENCE, INC.            Topic: T601

    To provide additional telemetry and data for long-term mission, the composition of internal atmosphere of spacesuits must be determined. Specifically, the unambiguous detection and quantification of carbon dioxide is crucial for mission completion. Detection of other gasses (ammonia, oxygen) is also necessary for a complete sensor suite. Seacoast Science and Case Western Reserve University pro ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  5. Sensitivity Analysis for Design Optimization Integrated Software Tools

    SBC: Linked, Inc.            Topic: T401

    The objective of this proposed project is to provide a new set of sensitivity analysis theory and codes, the Sensitivity Analysis for Design Optimization Integrated Software Tool set, to work within the existing NASA O3 Tool. In this Phase I effort, the sensitivity approach will be implemented for two basic types of analysis, namely static systems of equations (linear and non-linear) and eigen-pro ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  6. Low-Cost, Scalable, Hybrid Launch Propulsion Technology

    SBC: PHYSICAL SCIENCES INC.            Topic: T101

    Physical Sciences Inc. (PSI), in collaboration Purdue University, proposes to develop a novel launch propulsion technology for rapid insertion of nano/micro satellites (~ 5-50 kg scale) into low earth orbit, with the potential to lower the current state-of-the-art launch stage cost by a factor of two. The technology employs a propulsion scheme comprising a storable liquid oxidizer and a unique sol ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  7. Innovative Aerodynamic Modeling for Aeroservoelastic Analysis and Design

    SBC: M4 ENGINEERING, INC.            Topic: T401

    We propose the development of a novel aerodynamic modeling approach making use of fully unstructured grids for unsteady panel aerodynamic models for aeroelastic and aeroservoelastic analysis. The unsteady aerodynamic code will be integrated with an existing suite of aeroelastic and aeroservoelastic analysis tools making it possible to perform aeroelastic and aeroservoelastic analysis of complex v ...

    STTR Phase II 2016 National Aeronautics and Space Administration
  8. Multifunctional Environmental Digital Scanning Electron Microprobe (MEDSEM)

    SBC: CHROMOLOGIC LLC            Topic: T801

    Chromologic (CL) and the California Institute of Technology (Caltech) propose to continue the Phase II STTR development and demonstration of a Multifunctional Environmental Digital Scanning Electron Microprobe (MEDSEM) instrument that transmits high energy beams of electrons sequentially using a two-dimensional array of multiple, miniaturized electron probes into a planetary atmosphere and strike ...

    STTR Phase II 2016 National Aeronautics and Space Administration
  9. High Performance Hybrid Upper Stage for NanoLaunch Vehicles

    SBC: PARABILIS SPACE TECHNOLOGIES INC            Topic: T101

    Parabilis Space Technologies, Inc (Parabilis), in collaboration with Utah State University (USU), proposes further development of a low-cost, high-performance launch vehicle upper stage that uses a high density, storable oxidizer and a polymer fuel grain as propellants in response to solicitation T1.01, Affordable Nano/Micro Launch Propulsion Stages. This effort will build upon the successful opti ...

    STTR Phase II 2016 National Aeronautics and Space Administration
  10. A Coupled System for Predicting SPE Fluxes

    SBC: PREDICTIVE SCIENCE INCORPORATED            Topic: T602

    Solar Particle Events (SPEs) represent a major hazard for extravehicular maneuvers by astronauts in Earth orbit, and for eventual manned interplanetary space travel. They can also harm aircraft avionics, communication and navigation. We propose to develop a system to aid forecasters in the prediction of such events, and in the identification/lengthening of "all clear" time periods when there is ...

    STTR Phase II 2016 National Aeronautics and Space Administration
US Flag An Official Website of the United States Government