You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Novel Separator Materials for Achieving High Energy/Power Density, Safe, Long-Lasting Lithium-ion Batteries for Navy Aircraft Applications

    SBC: ADA TECHNOLOGIES, INC.            Topic: N16AT008

    To meet Navy needs for high performance and safe lithium ion (Li-ion) batteries for naval aircraft, ADA Technologies Inc. (ADA) and its university collaborator propose to optimize and transfer a highly tunable, high performance and safe, block copolymer derived nanoporous separator. The innovative strategy provides a powerful tool to allow exquisite tuning of performance and safety features of the ...

    STTR Phase II 2018 Department of DefenseNavy
  2. Additive Manufacturing for Microwave Vacuum Electron Device Cost Reduction

    SBC: RADIABEAM TECHNOLOGIES, LLC            Topic: N16AT010

    The Department of the Navy has a need for the development of an additive manufacturing (AM) process for key vacuum electronic device components to meet on-demand, flexible, and affordable manufacturing requirements. The goal of this Phase II effort is to develop and validate Electron Beam Melting (EBM) additive manufacturing (AM) technology for the production of vacuum electronic devices meeting t ...

    STTR Phase II 2018 Department of DefenseNavy
  3. Protocol Feature Identification and Removal

    SBC: P & J ROBINSON CORP            Topic: N18AT018

    Protocols used for communication suffer bloat from a variety of sources, such as support for legacy features or rarely used (and unnecessary) functionality. Traditionally, the Navy subscribes to a blanket adoption of a standard protocol "as is". Unnecessary features are active and can be accessed by both internal and external systems creating security vulnerabilities. PJR Corporation's (PJR's) Pha ...

    STTR Phase I 2018 Department of DefenseNavy
  4. Rapid Identification of Effects of Defects within Metal Additive Manufacturing (RIED-AM)

    SBC: Intelligent Automation, Inc.            Topic: N18AT013

    Additive manufacturing (AM) systems, especially metal AM, bring revolutionary capabilities, but suffer from a lack of understanding of the defects that exist within the components. In this research, based on selective experimental study and numerical simulations, we will develop an empirical database of defects and their effects on mechanical properties using Laser Powder Bed Fusion (LPBF) technol ...

    STTR Phase I 2018 Department of DefenseNavy
  5. Optimization of Fatigue Test Signal Compression Using the Wavelet Transform

    SBC: ATA ENGINEERING, INC.            Topic: N18BT029

    Traditional approaches to accelerated fatigue testing rely on heuristic methods with thresholds based mostly on experience and engineering judgment. These methods generally do not apply to the multiaxial dynamic loading situations characteristic of most aerospace applications and often result in uncharacteristic fatigue damage and failure modes during testing. To overcome the limitations of tradit ...

    STTR Phase I 2018 Department of DefenseNavy
  6. Medium Voltage Direct Current (MVDC) Fault Detection, Localization, and Isolation

    SBC: ISSAC Corp            Topic: N16AT009

    During the Phase II effort, the ISSAC Team will investigate several objectives and questions posed in Phase I efforts, in order to best develop a draft specification for NGES MVDC DLI systems. This includes exploring notional and conceptual architectures and discerning thresholds for DLI parameters; exploring individual and hybrid protection plan technologies to drive performance requirements for ...

    STTR Phase II 2018 Department of DefenseNavy
  7. Nondestructive Evaluator for Polymer Ablatives (NEPAL)

    SBC: Intelligent Automation, Inc.            Topic: N18AT011

    Materials for thermal protection are required to protect structural components of space vehicles during the re-entry stage, missile launching systems, and solid rocket motors (SRMs). Polymer resins that have high char retention (e.g., phenolic resins) are the most common matrices in the composite materials for rigid thermal protection systems (TPSs) due to their tunable density, lower cost, and hi ...

    STTR Phase I 2018 Department of DefenseNavy
  8. Operational Sand and Particulate Sensor System for Aircraft Gas Turbine Engines

    SBC: HAL Technology, LLC            Topic: N18AT023

    Gas turbine engines with prolonged exposure to sand and dust are susceptible to component and performance degradation and ultimately engine failure. Hal Technology’s proprietary, compact, rugged, flush-mounted, fiber-optic sensor platform measures particulate size, size distributions, and concentration for real-time engine health monitoring. Our proposed sensor will use an innovative hybrid disc ...

    STTR Phase I 2018 Department of DefenseNavy
  9. Proactive Contextual Decision Support for Decision Making Under Uncertainty

    SBC: PACIFIC SCIENCE & ENGINEERING GROUP, INC.            Topic: N13AT020

    Current decision tools often omit important situational context. Unfortunately, this can lead to dangerous and costly errors, as context drives decision making. For example, in operational navigation planning tasks, decisions must be made that rely on multiple information sources of different fidelities and uncertainties. Furthermore, after obtaining additional information the necessity for replan ...

    STTR Phase II 2015 Department of DefenseNavy
  10. Situational Awareness for Mission Critical Ship Systems

    SBC: IERUS TECHNOLOGIES INC            Topic: N18AT009

    The US Navy operates a vast fleet of combat and support vessels with complex power control systems under the control and decision authority of human operators. Several current resources such as SPY-1D radar and Vertical Launch System (VLS) and future resources such as railgun, AMDR, and high energy laser (HEL) are energy hungry, exceeding current and planned power generation capability when deploy ...

    STTR Phase I 2018 Department of DefenseNavy
US Flag An Official Website of the United States Government