You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. ADA Conformable Wearable Battery-Hybrid Electrical Energy Storage System: A Rechargeable, Safe and High Performance Energy Storage Solution

    SBC: ADA TECHNOLOGIES, INC.            Topic: A15AT010

    ADA Technologies, Inc. proposes to transition our previously developed BB-2590 Hybrid Electrical Energy Storage System (HEESS) architecture into a Conformable Wearable Battery format, or CWB-HEESS (Figure 1). We seek to satisfy a meaningful, Army Program Executive Office (PEO) Soldier need for a rechargeable, safe and high energy CWB. We anticipate the CWB-HEESS will have broad U.S. Dept. of Defen ...

    STTR Phase II 2018 Department of DefenseArmy
  2. Provably Unclonable Functions on Re-configurable Devices

    SBC: IERUS TECHNOLOGIES INC            Topic: A18BT001

    The ability to authenticate electronic devices is an important step towards modernizing the hardware/software of our Nations communication systems. Protecting these targeted networks and devices from malicious cyber-based attacks is becoming increasingly important as the technological and cyber capabilities of our adversaries continue to advance. In addition to network security, device authenticat ...

    STTR Phase I 2018 Department of DefenseArmy
  3. Man-Portable and Fieldable Mass Spectrometer for Sequencing Peptides

    SBC: BAYSPEC, INC.            Topic: A16AT012

    BaySpec Inc., in collaboration with Pacific Northwest National Laboratory, proposes to develop a new portable multi-order mass spectrometry system that can sequence peptides derived from biological agents including bacteria, viruses, and toxins. During Phase I stage, a fully functional prototype instrument, based on an innovative design concept, was successfully built and the performance evaluatio ...

    STTR Phase II 2018 Department of DefenseArmy
  4. On Demand Energy Activated Liquid Decontaminants and Cleaning Solutions

    SBC: TDA Research, Inc.            Topic: A12AT005

    On-site activated decontaminants will revolutionize chemical and biological decon because the activated solution is produced on demand, without the limitations of traditional pre-made mixtures. TDAs system uses electrical activation to convert battery power into reactive chemicals that quickly destroy chemical and biological warfare agents. Prior to activation, the decontaminant mixture can be saf ...

    STTR Phase II 2018 Department of DefenseArmy
  5. Low-Loss Commercial Deposition Technology for Thick Ferrites and Ferrite/Insulator Films on Printed Circuit Boards

    SBC: WINCHESTER TECHNOLOGIES LLC            Topic: A16020

    Integration of RF ferrites on printed circuit boards (PCBs) is highly desired for realizing compact, lightweight and low-cost systems with different RF ferrite components, including inductors, antennas and antenna arrays, etc. However, it has been challenging to integrate ferrites on PCBs. Spin spray deposition can produce fully dense, high crystalline quality, and low-loss RF ferrites at a low te ...

    STTR Phase II 2018 Department of DefenseArmy
  6. High Gain, High Power PCSS with Integrated Monolithic Optical Trigger

    SBC: Eureka Aerospace            Topic: A14AT004

    This proposal addresses the problem of PCSS/laser trigger integration using a single monolithic laser diode array, thus simplifying the entire optical delivery network necessary for efficient operation of PCSSs. The proposal constitutes a logical continuation of Phase I effort where the main focus was on the detailed design of the PCSS/laser diode array (LDA) integrated architecture. In Phase II ...

    STTR Phase II 2016 Department of DefenseArmy
  7. Tunable High-Power Infrared Lasers for Standoff Detection Applications

    SBC: EOS Photonics            Topic: A14AT015

    To achieve the goals of this program improving spectral coverage and output power of monolithic QCL sources - we propose to develop in collaboration with MIT Lincoln Laboratory a broadly tunable high power source that is based on Eos proprietary QCL array technology. The current generation of Eos commercially available fully packaged QCLAs (The Matchbox) can be tuned over a wavelength range of u ...

    STTR Phase II 2016 Department of DefenseArmy
  8. Conductive Transmissive Coating for Enhanced-Absorption Thin Film Solar Cells

    SBC: AGILTRON, INC.            Topic: A15AT016

    Thin-film, lightweight, large-area flexible inorganic solar cells have shown promise to meet the militarys remote power needs on the battlefield. However, thin film solar cells normally have inferior conversion efficiencies due to limited absorption of sunlight by the thin active layer. Various approaches have been investigated to improve conversion efficiencies of thin film solar cells. Among the ...

    STTR Phase I 2016 Department of DefenseArmy
  9. Energy Harvesting Fabric

    SBC: Streamline Automation, LLC            Topic: A15AT017

    A human produces more than 100 Watts of waste heat during normal activity. If a fraction of this heat energy can be harvested it can replace the stored chemical energy in one or more of the batteries typically carried by soldiers in the field. The current generation batteries, such as the BB2590 are bulky and rigid. The PowerFelt material developed by Wake Forest University is ideally suited for h ...

    STTR Phase I 2016 Department of DefenseArmy
  10. FRICTION STIR ADDITIVE MANUFACTURING OF TITANIUM ALLOYS FOR HIGH PERFORMANCE MILITARY APPLICATIONS

    SBC: ATS-MER, LLC            Topic: A16AT002

    Friction stir additive manufacturing (FSAM) will be utilized for repair, fabrication and processing of Titanium components and sub-assemblies for high performance military applications. The innovation will address the issue of part distortion resulting from high residual stresses imposed during traditional fusion welding based additive manufacturing techniques. In addition to enhancing dimensional ...

    STTR Phase I 2016 Department of DefenseArmy
US Flag An Official Website of the United States Government