You are here
Award Data
The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.
Download all SBIR.gov award data either with award abstracts (290MB)
or without award abstracts (65MB).
A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.
The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.
-
Portable and Automated Radiation Effects Test Structures for Advanced Technology Nodes
SBC: MICROELECTRONICS RESEARCH DEVELOPMENT CORPORATION Topic: DTRA16A003Micro-RDC will develop portable radiation effects test structures that scales to new process nodes. These structures will enable the investigation of the effects of radiation on the new technology from the material processing level as well as the circuit level. The production of the chosen structures and the development of software to extract the model parameters will form the framework. A suit ...
STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency -
Modular Pulse Charger and Laser Triggering System for Large-Scale EMP and HPM Applications
SBC: SCIENTIFIC APPLICATIONS & RESEARCH ASSOCIATES, INC. Topic: DTRA16A004For effective protection against EMP and HPM threats, it is important to understand the physics of the threats, and also to quantify the effects they have on electrical systems. EMP and HPM vulnerability testing requires delivery of high peak power and electric fields to distant targets. The most practical solution to simulate such environments is to develop a modular, optically-isolated MV-antenn ...
STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency -
Vertical GaN Substrates
SBC: Sixpoint Materials, Inc. Topic: DEFOA0000941SixPoint Materials will create low-cost, high-quality vertical gallium nitride (GaN) substrates using a multi-phase production approach that employs both hydride vapor phase epitaxy (HVPE) technology and ammonothermal growth techniques to lower costs and maintain crystal quality. Substrates are thin wafers of semiconducting material needed for power devices. In its two-phase project, SixPoint Mate ...
STTR Phase II 2017 Department of EnergyARPA-E