You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Conductive Transmissive Coating for Enhanced-Absorption Thin Film Solar Cells

    SBC: AGILTRON, INC.            Topic: A15AT016

    Thin-film, lightweight, large-area flexible inorganic solar cells have shown promise to meet the militarys remote power needs on the battlefield. However, thin film solar cells normally have inferior conversion efficiencies due to limited absorption of sunlight by the thin active layer. Various approaches have been investigated to improve conversion efficiencies of thin film solar cells. Among the ...

    STTR Phase I 2016 Department of DefenseArmy
  2. Energy Harvesting Fabric

    SBC: STREAMLINE AUTOMATION LLC            Topic: A15AT017

    A human produces more than 100 Watts of waste heat during normal activity. If a fraction of this heat energy can be harvested it can replace the stored chemical energy in one or more of the batteries typically carried by soldiers in the field. The current generation batteries, such as the BB2590 are bulky and rigid. The PowerFelt material developed by Wake Forest University is ideally suited for h ...

    STTR Phase I 2016 Department of DefenseArmy
  3. Green Diode Lasers (480-550 nm Spectral Regime)

    SBC: EPITAXIAL LABORATORY INC            Topic: A16AT003

    Despite their broad applications, up to date, diode pumped solid state green lasers are almost exclusively dominate the market due to the lack of low defect or defect-free semiconductor materials with high efficiency at green wavelength (480-550nm). We propose to develop compact, high efficiency, and high brightness III-nitride based green lasers. In phase I, we will focus on design, epitaxial gro ...

    STTR Phase I 2016 Department of DefenseArmy
  4. Acoustically/Vibrationally Enhanced High Frequency Electromagnetic Detector for Buried Landmines

    SBC: AKELA INC            Topic: A16AT004

    Laboratory investigations have suggested that acoustically or vibrationally inducing motion in buried targets can aid in improving target detectability through a characteristic response related to differential target motion. This gain is realized by adding an additional degree of freedom, modulation due to motion in the GPR return signal, to use as a discriminating feature. The AKELA team is propo ...

    STTR Phase I 2016 Department of DefenseArmy
  5. Acoustically/Vibrationally Enhanced High Frequency Electromagnetic Detector for Buried Landmines

    SBC: White River Technologies Inc            Topic: A16AT004

    White River Technologies, Inc. (WRT) and University of Vermont (UVM) present this proposal, "Acoustically/Vibrationally Enhanced High Frequency Electromagnetic Detector for Buried Landmines". Among the primary gaps in our current landmine detection technology base is the ability to detect a wide range of buried explosive hazards including emerging low-metal mines and improvised explosive devices ...

    STTR Phase I 2016 Department of DefenseArmy
  6. Identification of Multiple Illicit Drugs Using a Handheld Detector Based on Chemiresitive Sensor Arrays

    SBC: Next Dimension Technologies, Inc.            Topic: A16AT008

    Next Dimension Technologies and Caltech will jointly develop a handheld detector to meet the Armys need for a field-based illicit drug identification system. The project will focus on the design and development of a dual-mode chemiresistive sensor array capable of detecting key drugs of interest, including synthetic cannabinoids and opioids. Novel sensing materials, with enhanced chemical sensit ...

    STTR Phase I 2016 Department of DefenseArmy
  7. Paper test cards for detection of illicit narcotic and cannabinioid drugs

    SBC: VURONYX TECHNOLOGIES LLC            Topic: A16AT008

    Vuronyx Technologies and Prof. Marya Lieberman at the University of Notre Dame will develop paper analytical devices (idPADs) to presumptively identify illicit drugs. All the reagents needed to perform twelve different chemical color tests are stored on the idPAD. The user rubs the powder to be tested across the PAD, then dips the PAD in water to activate the tests. Within five minutes, a color ...

    STTR Phase I 2016 Department of DefenseArmy
  8. Miniature Mass Spectrometer for Peptide Sequencing and Mobile Coupling with Separation Techniques

    SBC: BAYSPEC, INC.            Topic: A16AT012

    Using advanced ion optics that was developed by Pacific Northwest National Laboratory (PNNL), BaySpec will develop a prototype of portable mass spectrometer (less than 40 lb. and 300W) with continuous atmospheric pressure inlet that is fully capable of uninterrupted on-line sampling from an ambient environment. The continuous nature of the inlet ensures full compatibility with separation technique ...

    STTR Phase I 2016 Department of DefenseArmy
  9. Big Open Source Social Science (BOSSS)

    SBC: BOSTON FUSION CORP            Topic: A16AT013

    Boston Fusion Corp. and Arizona State University propose to research and develop Big Open Source Social Science (BOSSS). In BOSSS, we will create a unified approach that combines social and computer science methodologies to collect and interpret big open source data, yielding meaningful focused analysis of selected populations. We will develop a system framework that adaptively learns social behav ...

    STTR Phase I 2016 Department of DefenseArmy
  10. Wearable Neurophysiological Monitoring Device for Circadian Rhythm Assessment and Intervention

    SBC: Cognionics, Inc.            Topic: A16AT014

    This Phase I STTR project will develop a platform to demonstrate high-quality, multi-modal acquisition of neurophysiological signals, including EEG, heart rate/blood oxygenation via photoplethysmography (PPG), electrodermal (EDA) activity, temperature plus environmental factors such as ambient light and sound in a simple, wearable headband. The hardware will be coupled with the development of a cl ...

    STTR Phase I 2016 Department of DefenseArmy
US Flag An Official Website of the United States Government