You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Griffon Test Suite

    SBC: SOAR TECHNOLOGY INC            Topic: DHA17C001

    In this proposal we support the development of a hypoxia test battery by designing and developing a domain general tool suite for processing, synchronizing, and evaluating data from cognitive, behavioral, and physiological measures.The proposed Griffon Tool Suite addresses many of the practical requirements demanded by a flexible test battery. The effort falls into three major thrusts.First, we pr ...

    STTR Phase I 2018 Department of DefenseDefense Health Agency
  2. Trajectory Simulation using PSM

    SBC: TRITON SYSTEMS, INC.            Topic: MDA17T002

    Triton Systems, Inc. proposes to develop a method for efficiently running federated simulations of atmospheric and orbital rocket flight. Tritons proposed method will be able to get information between time steps without the need for interpolation and will significantly reduce the computational time needed to run Federated simulations.Approved for Public Release | 18-MDA-9522 (23 Feb 18)

    STTR Phase I 2018 Department of DefenseMissile Defense Agency
  3. Novel Structure-Preserving Algorithms for Accurate Rocket Trajectory Propagation

    SBC: OPTIMAL SYNTHESIS INC.            Topic: MDA17T002

    The Department of Defense uses large-scale high-resolution federated simulations to propagate rocket vehicle trajectories. Runge-Kutta methods have served as a de-facto standard while conducting such simulations. However, there are several challenges while using Runge-Kutta methods for this task. Firstly, there should be exact time-step matching between federates, otherwise the states have to be i ...

    STTR Phase I 2018 Department of DefenseMissile Defense Agency
  4. SmallSat Stirling Cryocooler for Missile Defense (SSC-X)

    SBC: WECOSO, INC.            Topic: MDA17T003

    West Coast Solutions (WCS), in collaboration with the Georgia Institute of Technology and Creare LLC, proposes an adaptation of our SmallSat Stirling Cryocooler (SSC) technology in response to STTR Topic MDA17-T003: High-Efficiency, Low-Volume, Space-Qualified Cryogenic-Coolers. In Phase 1 we will scale up a design currently in development for NASA to meet the Missile Defense Agency (MDA) topic re ...

    STTR Phase I 2018 Department of DefenseMissile Defense Agency
  5. Smallsat Cryocooler System

    SBC: IRIS TECHNOLOGY CORPORATION            Topic: MDA17T003

    The Iris Technology team which also include Northrop Grumman Aerospace Systems (NGAS) and the University of Wisconsin, is attacking the problem of high-efficiency, low-volume, space-qualified cryocooler systems.The team has a firm starting point by leveraging the Northrop Grumman Microcryocooler and the Iris Technology mLCCE (Miniature Low Cost Control Electronics).TMU enhancement will start with ...

    STTR Phase I 2018 Department of DefenseMissile Defense Agency
  6. Lightweight Structural Components of a Missile Body

    SBC: ALPHASTAR TECHNOLOGY SOLUTIONS LLC            Topic: MDA17T004

    The Ground-Based Interceptor (GBI) missile is the weapon component of the Ground-Based Midcourse Defense (GMD) system that consists of a rocket booster and kinetic kill vehicle. Recently, MDA has sought technologies to improve the performance of the booster vehicle (BV). To date, studies have shown that reductions in weight have a direct impact on overall effectiveness. The current proposal aims t ...

    STTR Phase I 2018 Department of DefenseMissile Defense Agency
  7. Novel Cooling System for Laser Enclosure

    SBC: PHOTONWARES CORP            Topic: N18AT001

    We propose to utilize a laser 3D printing manufacturing technique to realize an ultra high efficiency micro-channel laser head cooling system with high thermal load capacity in a small volume package. The new approach incorporates key technical innovations that drastically increase the forced water flow interaction surface area and the metal thermal conductivity. The approach enables conformal geo ...

    STTR Phase I 2018 Department of DefenseNavy
  8. Detection Rate Improvements Through Understanding and Modeling Ocean Variability

    SBC: Ocean Acoustical Services and Instrumentation Systems, Inc.            Topic: N18AT002

    The littoral environment is especially demanding on tactical sonar systems, in large part because the spatial and temporal variability imposes sonar system operating conditions of a nature and with a scale heretofore not encountered in the open oceans. Recent Office of Naval Research (ONR) sponsored basic research as well as fleet exercises have shown that littoral environments tactically importan ...

    STTR Phase I 2018 Department of DefenseNavy
  9. Meaning-Aligned Record Synthesis for Training Emerging Capabilities (MARSTEC)

    SBC: SOAR TECHNOLOGY INC            Topic: N18AT003

    Operational experts collect recorded data about emerging tactics, techniques, and procedures (TTPs) from sources such as live and virtual training exercises, and numerous test and evaluation simulations. However, instructional designers cannot easily reuse the recorded data to create new training. Without sufficient access to operational experts, expert knowledge is inaccessible and fragmented, of ...

    STTR Phase I 2018 Department of DefenseNavy
  10. TOPMAST: Training Operational Performance via Measure Automation and Scenario-generation Technology

    SBC: APTIMA INC            Topic: N18AT003

    As the number of emerging warfare capabilities increases, adaptive training is required in order to keep pace with the corresponding increase in the scale and complexity of training regimes. To enable truly adaptive training, training systems need to both (1) automatically generate training scenarios and (2) automatically assess trainee performance. Lastly, (3) diagnostic visualization technologie ...

    STTR Phase I 2018 Department of DefenseNavy
US Flag An Official Website of the United States Government