You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. An improved passivation process for the fabrication of high performance antimony based III-V superlattice materials

    SBC: IRDT Solutions, Inc            Topic: MDA12T003

    Phase I objective is to demonstrate the feasibility of our proposed passivation approach to minimize the dark current noise and improve the quantum efficiency in the GaSb based type II superlattice detectors. Phase I goal is to demonstrate the feasibility of our technology to fabricate photodiodes with cut-off wavelength in excess of 10µm, quantum efficiency exceeding 70% and dark current density ...

    STTR Phase I 2013 Department of DefenseMissile Defense Agency
  2. Innovative Polishing Technology for Fabrication of High Performance Epi-ready GaSb Substrates

    SBC: Sinmat Inc            Topic: MDA12T003

    Antimony containing III-V semiconducting compounds are particularly attractive for the fabrication of a wide variety of electronic and optoelectronic devices such as photo detectors operating in the long wave infrared wavelength (12-32µm) range. The production of epi quality GaSb wafers still remains one of the important problems for rapid commercialization of GaSb devices. Sinmat Inc. proposes a ...

    STTR Phase I 2013 Department of DefenseMissile Defense Agency
  3. RF-IR Data Fusion

    SBC: DECIBEL RESEARCH, INC.            Topic: MDA12T002

    The development and integration of three unique and innovative algorithm prototypes into a"Fused Track and Characterization Schema"are proposed. This Schema will encompass the determination of signatures and characteristics of objects that can be identified by RF and EO/IR Sensors in order to enable multi-sensor data fusion and correlation. The first algorithm, the"3D Pose Estimation"Algorithm, p ...

    STTR Phase I 2013 Department of DefenseMissile Defense Agency
  4. Efficient Clutter Suppression and Nonlinear Filtering Techniques for Tracking Dim Closely Spaced Objects in the Presence of Debris

    SBC: TOYON RESEARCH CORPORATION            Topic: MDA12T004

    EO/IR elements of the Ballistic Missile Defense System (BMDS) responsible for detecting and tracking ballistic missile threats encounter extraordinarily challenging threat and scene phenomenology. Specifically, non-stationary clutter characteristic of airborne and satellite-based sensor systems, along with dim target signatures, closely-spaced objects, and dense debris clouds typical of ballistic ...

    STTR Phase I 2013 Department of DefenseMissile Defense Agency
  5. Human-In-Control (HIC) Modeling and Integration Framework for BMDS Simulations

    SBC: Intelligent Automation, Inc.            Topic: MDA12T006

    IAI with University of Michigan proposes an innovative HIC software modeling and integration framework built around objectively quantified cognitive models of human operators i) Executive-Process/Interactive Control (EPIC) and ii) GOMS (Goal Operator Method and Selection rules) Language Evaluation and Analysis (GLEAN). The framework provides ability to model existing or futuristic operator workst ...

    STTR Phase I 2013 Department of DefenseMissile Defense Agency
  6. M&S Uncertainty Quantification

    SBC: OPTIMIZATION TECHNOLOGIES, INC.            Topic: MDA12T007

    OptTek Systems, Inc (OptTek), proposes an affordable, effective UQ capability for both legacy and new BMDS M & S. The OptTek Team includes research institution partner Oak Ridge National Laboratory (ORNL) and subcontractor RTSync Corporation (RTSync). The proposed BMDS M & S UQ capability maximizes insertability into existing and future MDA BMDS M & S-supported Event processes, analysis methods, a ...

    STTR Phase I 2013 Department of DefenseMissile Defense Agency
  7. M&S Uncertainty Quantification

    SBC: NUMERICA CORPORATION            Topic: MDA12T007

    A goal of Uncertainty Quantification (UQ) is to use computer simulation of complex systems to make scientifically informed assessments for high-consequence decisions. Because end-to-end empirical data is difficult to obtain for the Ballistic Missile Defense System (BMDS), computer simulation provides the best method for understanding BMDS capabilities against a wide range of threats. Numerica Co ...

    STTR Phase I 2013 Department of DefenseMissile Defense Agency
  8. M&S Uncertainty Quantification

    SBC: M4 ENGINEERING, INC.            Topic: MDA12T007

    M4 Engineering, Inc. and Missouri S & T propose to investigate and refine uncertainty quantification (UQ) methods for Ballistic Missile Defense Systems (BMDS) Modeling and Simulation (M & S) with the emphasis on demonstrating the feasibility of non-intrusive stochastic expansions based on polynomial chaos, which will address the accuracy and computational efficiency issues associated with UQ in BM ...

    STTR Phase I 2013 Department of DefenseMissile Defense Agency
  9. Decision Making under Uncertainty

    SBC: GCAS, Inc.            Topic: MDA13T001

    The objectives of our Phase I effort are to characterize target sensor measurement uncertainties and feature extraction uncertainties; determine how and where, in the processing chain, these affect target discrimination and classification; show how the different sources of uncertainty lead to the cumulative uncertainty in the final decision; provide techniques that will be instrumental to optimizi ...

    STTR Phase I 2014 Department of DefenseMissile Defense Agency
  10. Micro-Particle Debris Characterization from Hyper-Velocity Impacts

    SBC: Torch Technologies, Inc.            Topic: MDA13T002

    The Torch Team is proposing to design and conduct laboratory-based experiments to elucidate the fundamental micro-debris formation mechanisms to improve intercept optical models. Ballistic missile intercept optical signatures collected over the last decade have identified definitive micro-debris parameter trends. These measurements place bounds on the debris temperature, number of particles, and ...

    STTR Phase I 2014 Department of DefenseMissile Defense Agency
US Flag An Official Website of the United States Government