You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. VOC Breath Analysis with Ultra-Sensitive Microwave Spectroscopy

    SBC: NOKOMIS INC            Topic: DHP16C002

    Nokomis proposes to develop a real-time microwave spectroscopy device to identify Volatile Organic Compounds (VOCs) associated with Pulmonary Oxygen Toxicity. Exhaled breath contains VOCs that act as signatures of bodily health, and are able to be utilized for health diagnostics. The proposed work will demonstrate sensitivity to the presence of chemicals at less than 50 ppb concentration levels, a ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  2. Ultra-Wide Band RF Quantitative Diagnostics of Burn Injuries

    SBC: NOKOMIS INC            Topic: DHP16C005

    This proposal is dedicated to development of portable device for -on site- diagnostic of burn injury. The design will utilize a technology Ultra-Wide Band RF waves of ultra-low intensity (harmless by Federal Standards). The emitted RF waves will reflect from boundaries between tissues normal and damaged by injury to quantitatively characterize severity of burn and would require minimal skills fro ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  3. Enhanced WAAVES+: A Fast and Accurate Automated USV Scoring Program

    SBC: CORNERSTONE RESEARCH GROUP INC            Topic: DHP16C003

    Cornerstone Research Group (CRG) and the University of Texas (UT) will team to develop a fast and accurate automated analysis program for USV scoring. This automated tool will enable greater research efficiency and throughput allowing greater strides in developing treatments for post-traumatic stress disorder through rodent-based research. Building off prior work by UT on a first generation auto-s ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  4. Novel Extensible Design Approaches for Advanced Aircraft Composite Structural Architectures (MSC P4135)

    SBC: MATERIALS SCIENCES LLC            Topic: ST13A006

    Among the factors that inhibit the use of composite materials in both general aviation aircraft and DoD platforms are the high cost of engineering and the cost of certification. Unless manufacturers can control risk when introducing new materials and pro

    STTR Phase I 2013 Department of DefenseDefense Advanced Research Projects Agency
  5. Limit State Design of Composite Aerospace Structures

    SBC: CORNERSTONE RESEARCH GROUP INC            Topic: ST13A006

    Federal Aviation Administration Advisory Circular 20-107B provides guidance on the achievement of compliance with Title 14 of the Code of Federal Regulations regarding airworthiness type certification requirements for composite aircraft structures necessi

    STTR Phase I 2013 Department of DefenseDefense Advanced Research Projects Agency
  6. Modeling and Optimizing Turbines for Unsteady Flow

    SBC: Florida Turbine Technologies Inc.            Topic: ST13A005

    Pressure gain combustion has the potential to significantly improve the specific fuel consumption for gas turbine engines by realizing a pressure rise through the combustor as opposed to a pressure drop. One drawback to this form of combustion is the cycl

    STTR Phase I 2013 Department of DefenseDefense Advanced Research Projects Agency
  7. Modeling Leadership Dynamics in Multinational Environments

    SBC: MacroCognition, LLC            Topic: ST092002

    We propose to develop a computational model of leadership designed to capture complex variables including cultural differences in leadership requirements along with task differences, primarily ill-defined goals, which pose leadership challenges. Rather than avoiding these kinds of complexity and developing a computational model that is unlikely to scale up, we believe there is more to be gained b ...

    STTR Phase I 2010 Department of DefenseDefense Advanced Research Projects Agency
US Flag An Official Website of the United States Government