You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Innovative Passive Magnetic Thrust Bearings for High-Speed Turbomachinery

    SBC: MAINSTREAM ENGINEERING CORP            Topic: N10AT037

    In miniature gas turbines for UAV applications, traditional bearings exhibit a typical lifetime of only 25 hours due to excessive axial loading. Mainstream proposes to use a passive, permanent magnet thrust bearing to alleviate this problem and increase service life to over 1000 hours. Since this type of bearing is non-contacting, it can operate at very high rotational speeds with minimal heat gen ...

    STTR Phase I 2010 Department of DefenseNavy
  2. Probabilistic Prediction of Location-Specific Microstructure in Turbine Disks

    SBC: SCIENTIFIC FORMING TECHNOLOGIES CORPORATION            Topic: N10AT028

    While there are established methods available in determining the fatigue life of critical rotating components, there is still room for improvement for better understanding and prediction of life limiting factors. Improved risk assessment of jet engine disk components would require probabilistic modeling capability of the evolution of microstructural features, residual stresses and material anomali ...

    STTR Phase I 2010 Department of DefenseNavy
  3. Multi-scale modeling of corrosion fatigue damage using peridynamics theory

    SBC: CFD RESEARCH CORPORATION            Topic: N13AT007

    The overall objective of this effort is to identify, and validate a suitable methodology and the associated multi-scale computational technique for predictive assessment of corrosion fatigue damage in Naval aircraft. Annual costs for corrosion inspection and repair of military aircraft are estimated to exceed $1B. Predictive modeling of corrosion fatigue damage is challenging since it has to captu ...

    STTR Phase I 2013 Department of DefenseNavy
  4. High Efficiency Computation of High Reynolds Number Flows

    SBC: Technosoft, Inc            Topic: N13AT009

    Although advancements in CFD technology and high performance computing have proven to be effective and reasonably accurate in assessing the hydrodynamic performance of naval vessels, the effort required to develop associated analysis models remains a challenging and time consuming task. Decomposing and manipulating the design geometry for mesh construction, while capturing near-field and far-field ...

    STTR Phase I 2013 Department of DefenseNavy
  5. Mechanical Property Characterization and Modeling for Structural Mo-Si-B Alloys for High Temperature Applications

    SBC: Imaging Systems Technology, Inc.            Topic: N13AT012

    Under this STTR, Imaging Systems Technology (IST) in cooperation with Georgia Institute Technology (GIT) will develop and mature models to predict mechanical properties of refractory alloys with an eye toward tailoring these alloys for specific applications. In particular, this research will focus on addressing core aspects of Integrated Computational Materials Engineering (ICME) as it applies to ...

    STTR Phase I 2013 Department of DefenseNavy
  6. Mechanical Property Characterization and Modeling for Structural Mo-Si-B Alloys for High Temperature Applications

    SBC: Deep Springs Technology            Topic: N13AT012

    The objective of the work described in this proposal is to aid in the advancement of Mo-Si-B alloys for use in high temperature applications such as hot gas stream components in turbine engines. Such alloys are being characterized for their monotonic tensile properties in tension and compression as well for their creep resistance. Likewise, multiphase Mo-Si-B alloys have been studied in terms of m ...

    STTR Phase I 2013 Department of DefenseNavy
  7. Development of Next-Generation Composite Flywheel Design for Shock and Vibration Tolerant, High Density Rotating Energy Storage

    SBC: PowerTHRU            Topic: N13AT022

    PowerTHRU Corporation proposes to meet or exceed the requirements of this STTR by utilizing its extensive experience in carbon fiber based high speed flywheel systems, to design and build a 100K RPM flywheel system. Unlike steel flywheel technologies that are limited by the speed in which they can safely rotate, PowerTHRU has already demonstrated that 50,000 RPM carbon fiber flywheels can be desig ...

    STTR Phase I 2013 Department of DefenseNavy
  8. Intelligence and Intuition for Enhanced Decision Making (I2EDM)

    SBC: Modus Operandi, Inc.            Topic: N13AT024

    The focus of our Intelligence and Intuition for Enhanced Decision Making (I2EDM) Phase 1 research is to provide efficient and timely automated production and dissemination of information products in support of doctrinal Decision Points for the Company and below in austere environments. Operating in the Cloud, I2EDM will continuously fuse tactical information with human intuition and experience to ...

    STTR Phase I 2013 Department of DefenseNavy
  9. Situational Awareness as a Man-Machine Map Reduce Job

    SBC: SOAR TECHNOLOGY INC            Topic: N13AT024

    Improving situational awareness and accuracy of decisions in complex missions relying on streaming open-source data requires scalable information extraction and fusion in collaboration between Man and Machine reasoning. SoarTech, with its proven track-record of basic and applied research and transition into actual deployment, will bring forward advanced imagery and text processing technology integ ...

    STTR Phase I 2013 Department of DefenseNavy
  10. Progressive Model Generation for Adaptive Resilient System Software

    SBC: SECURBORATION, INC.            Topic: N13AT014

    Complex software systems are typically developed by disparate engineering teams working concurrently. At the same time, software requirements are frequently dynamic, evolving even during active development cycles. Discrepancies between how software is defined and how it is implemented at the modular level can cascade into critical system errors when modules are integrated. More troubling is that i ...

    STTR Phase I 2013 Department of DefenseNavy
US Flag An Official Website of the United States Government