You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. A Battery Pack Risk Assessment Tool

    SBC: CREARE LLC            Topic: N10AT014

    When many Lithium-ion battery cells are integrated into a large pack, the possible outcomes resulting from individual cell faults are complex and difficult to predict. Consequently, there is great interest in developing design tools to aid in the optimization of pack performance as well as to understand and mitigate the effects of individual cell failures from propagating to other cells or even th ...

    STTR Phase I 2010 Department of DefenseNavy
  2. A Non-Contact Displacement Sensor for Estimating Sound Pressure Level in Pipes

    SBC: CREARE LLC            Topic: N10AT016

    The presence of noise in piping systems often serves as an early warning of mechanical problems such as faulty or cavitating pumps and valves, or boiling in cooling lines. Additionally, in many Naval environments, especially submarines, minimizing noise radiated from vibrating pipes is highly desirable. The ability to quantify the sound pressure level in fluid-filled pipes with an external sensor ...

    STTR Phase I 2010 Department of DefenseNavy
  3. Advanced Materials for the Design of Lightweight JP5/JP8/DS2 Fueled Engines for Unmanned Aerial Vehicles (UAVs)

    SBC: Northwest Uld, Inc.            Topic: N10AT001

    Northwest UAV Propulsion Systems proposes using our purpose built heavy fuel engine designed and built in the USA for small unmanned aerial systems in the tier 2 & 3 class. We will be adding a lightweight ceramic material set combined with FEA (Finite Element Analysis) and heavy fuel atomizer (IRAD Project) to create a lightweight engine for a SUAS or STUAS class UAVs. The Ceramic material set is ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government