You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Advanced Materials for the Design of Lightweight JP5/JP8/DS2 Fueled Engines for Unmanned Aerial Vehicles (UAVs)

    SBC: Northwest Uld, Inc.            Topic: N10AT001

    Northwest UAV Propulsion Systems proposes using our purpose built heavy fuel engine designed and built in the USA for small unmanned aerial systems in the tier 2 & 3 class. We will be adding a lightweight ceramic material set combined with FEA (Finite Element Analysis) and heavy fuel atomizer (IRAD Project) to create a lightweight engine for a SUAS or STUAS class UAVs. The Ceramic material set is ...

    STTR Phase I 2010 Department of DefenseNavy
  2. Advanced Generator/Motor System with Ultra-High Power Density

    SBC: CREARE LLC            Topic: N13AT028

    Generator and motor systems with high power density are needed as watercraft, aircraft, and land vehicles evolve toward more electric designs. In response, we propose to develop a system that operates at extremely high speed to provide ultra-high power density. The resulting system will be compact, lightweight, efficient, robust, and reliable. Our team is ideal for this project because we have foc ...

    STTR Phase I 2013 Department of DefenseNavy
  3. A Battery Pack Risk Assessment Tool

    SBC: CREARE LLC            Topic: N10AT014

    When many Lithium-ion battery cells are integrated into a large pack, the possible outcomes resulting from individual cell faults are complex and difficult to predict. Consequently, there is great interest in developing design tools to aid in the optimization of pack performance as well as to understand and mitigate the effects of individual cell failures from propagating to other cells or even th ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government