You are here
Award Data
The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.
Download all SBIR.gov award data either with award abstracts (290MB)
or without award abstracts (65MB).
A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.
The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.
-
Graded-Composition Refractory Coatings for Protection of Cu-Rails for Electromagnetic Launchers
SBC: Engineered Coatings, Inc. Topic: N10AT025The Navy is developing an electromagnetic (EM) launcher for long-range naval surface-fire-support. Severe operating conditions of the EM system place stringent requirements for materials, including high current and magnetic fields, high temperatures, contact with liquid metals, high stress/gouging from balloting contacts and high-speed-sliding electrical-contact with an Al armature. Engineered Coa ...
STTR Phase I 2010 Department of DefenseNavy -
Miniature, Portable, Device to Detect and Monitor Coagulopathy
SBC: Enterprise Sciences, Inc. Topic: N10AT043The objective of this proposal is to demonstrate the feasibility of a new thromboelastograph (TEG)-like instrument that has the same basic capabilities as the TEG – that is to say, capabilities of monitoring in vitro the kinetics, strength, and stability of clot formation in blood samples that are clot induced – but which is miniaturized, highly portable, rugged, and insensitive to adverse env ...
STTR Phase I 2010 Department of DefenseNavy -
Ultra Low-Power and Embeddable Blade-Condition Monitor
SBC: Extreme Diagnostics, Inc. Topic: 07cThis SBIR/STTR project delivers an ultra-low power structural health monitoring (SHM) system that uses autonomous, wirelessly embedded sensors to monitor and assess structural integrity in wind turbine blades. EASE features impedance-based active SHM, which is highly sensitive to damage like cracks, delimitations, mass variations, fastener failures and stiffness changes. Blades are the only wind t ...
STTR Phase I 2010 Department of Energy -
Dilution refrigerator technology for scalable quantum computing
SBC: High Precision Devices, Inc. Topic: ARMY08T020Currently large capacity cryostats, capable of hosting experiments for many qubits, require expensive and hard to obtain liquid cryogens. A few small cryo-free systems exist but they are non-ideal for this use. An opportunity exists for a large scale, c
STTR Phase II 2010 Department of DefenseArmy -
STTR Phase II: Improved Addressing Speed of Plasma-sphere Arrays
SBC: Imaging Systems Technology, Inc. Topic: ELThis Small Business Technology Transfer (STTR) Phase II project is a study to expand the high speed addressing work conducted under Phase I using monochrome Plasma-spheres to color Plasma-spheres. Plasma-spheres are hollow transparent shells that encapsulate a selected pressurized gas. When a voltage is applied across the shell, the gas ionizes and glows. Plasma-spheres are applied to flexible, el ...
STTR Phase II 2010 National Science Foundation -
An Advanced Undersea Lithium Ion Management System (U-LIMS)
SBC: Impact Technologies Topic: N10AT013Impact Technologies, in collaboration with Penn State Applied Research Laboratory, proposes to develop an advanced Battery Monitoring and Management System (BMMS) for lithium-ion battery packs that ensures adequate, safe, and reliable operation. This system will focus on real time diagnostics, prediction of catastrophic failure, and risk assessment for individual cells in high power applications. ...
STTR Phase I 2010 Department of DefenseNavy -
Magnetostrictive Vibration Energy Harvester (MAVEN)
SBC: Impact Technologies Topic: N10AT020Impact Technologies, in cooperation with Dr. Mohammed Daqaq from Clemson University, propose to develop a magnetostrictive materials based device for harvesting energy from mechanical vibration. The energy harvesting device will harness power from ship-hull vibrations in order to power sensing devices. This technology will be a key enabler for improved structural and machinery health management. K ...
STTR Phase I 2010 Department of DefenseNavy -
Advanced Software Tools for Lithium Ion Battery Risk Assessment (LIBRA)
SBC: Impact Technologies Topic: N10AT014Impact Technologies, in collaboration with the Georgia Tech Center for Innovative Fuel Cell and Battery Technologies, proposes to develop tools for Lithium Ion Battery Risk Assessment (LIBRA). These tools will allow the Navy to analyze proposed Li-Ion battery designs and assess the overall risk to the platform in the event of failure in a single cell. The tool will also predict the effects of a ca ...
STTR Phase I 2010 Department of DefenseNavy -
Dynamic PHM Modeling
SBC: Impact Technologies Topic: N10AT009Impact Technologies and Montana State University propose to develop a Dynamic Prognostic and Health Management (PHM) modeling capability and related test, validation, and support toolsets that will enable standardized approaches to model representation, information exchange, and PHM system support, providing for improved integration, interoperability and reuse of developed and emerging capabilitie ...
STTR Phase I 2010 Department of DefenseNavy -
A Biologically Inspired Micro Aerial Vehicle Design and Development
SBC: Impact Technologies Topic: AF08T008Impact Technologies, in collaboration with the Georgia Institute of Technology, the Rochester Institute of Technology and the Boeing Company, is proposing to complete the development, testing and evaluation of a novel biologically-inspired Micro Air Vehicle (MAV) conceptualized in Phase I and capable of agile and high endurance flight operations in dense and cluttered urban environments. Phase I a ...
STTR Phase II 2010 Department of DefenseAir Force