You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Progressive Model Generation for Adaptive Resilient System Software

    SBC: SECURBORATION, INC.            Topic: N13AT014

    Complex software systems are typically developed by disparate engineering teams working concurrently. At the same time, software requirements are frequently dynamic, evolving even during active development cycles. Discrepancies between how software is defined and how it is implemented at the modular level can cascade into critical system errors when modules are integrated. More troubling is that i ...

    STTR Phase I 2013 Department of DefenseNavy
  2. Process to Mitigate Catastrophic Optical Damage to Quantum Cascade Lasers

    SBC: IRGLARE LLC            Topic: N19AT004

    The development of a catastrophic optical damage model for quantum cascade lasers describing instantaneous laser damage at high optical power levels is proposed. The model will be validated by comparison to experimental data. Based on obtained results, changes to laser design and laser fabrication resulting in an increased damage threshold will be implemented. The work will ultimately result into ...

    STTR Phase I 2019 Department of DefenseNavy
  3. Probiotics for Maintaining Dolphin (Tursiops truncatus) Health and the Readiness of the U.S. Navy"s Marine Mammal Systems

    SBC: AGAVE BIOSYSTEMS INC.            Topic: N13AT013

    Agave BioSystems, with their academic partners at the Mote Marine Laboratory, proposes to develop probiotic pharmaceuticals from indigenous commensal microbes to enhance gastrointestinal health in the bottlenose dolphin (Tursiops truncatus). The dolphin gastrointestinal microbiome will be characterized by 16S rRNA deep sequencing, and culturable commensals will be isolated by plating dolphin gastr ...

    STTR Phase I 2013 Department of DefenseNavy
  4. Probabilistic Prediction of Location-Specific Microstructure in Turbine Disks

    SBC: SCIENTIFIC FORMING TECHNOLOGIES CORPORATION            Topic: N10AT028

    While there are established methods available in determining the fatigue life of critical rotating components, there is still room for improvement for better understanding and prediction of life limiting factors. Improved risk assessment of jet engine disk components would require probabilistic modeling capability of the evolution of microstructural features, residual stresses and material anomali ...

    STTR Phase I 2010 Department of DefenseNavy
  5. Probabilistic Prediction of Location-Specific Microstructure in Turbine Disks

    SBC: UES INC            Topic: N10AT028

    Thermo-mechanical processes of turbine disks have been progressively improved to meet microstructural requirements tailored for advanced, sustainable high temperature performances. However, the chemistry of typical Ni-base turbine disk alloys is very complex, and yields a variety of phases and microstructural anomalies under different thermo-mechanical heat treatments. These microstructural hetero ...

    STTR Phase I 2010 Department of DefenseNavy
  6. Predictive Graph Convolutional Networks- 19-008

    SBC: METRON INCORPORATED            Topic: N19AT017

    Metron and Northeastern University propose to design, develop, and validate a proof-of-concept predictive Graph Convolutional Network (GCN) capability using open source Reddit and GDELT data. We propose: (1) to extract and preprocess open-source Reddit and GDELT data, (2) to design a predictive graph convolutional neural network model, (3) to implement and train that model, and (4) to validate the ...

    STTR Phase I 2019 Department of DefenseNavy
  7. Power Dense Turbo-Compression Cooling Driven by Waste Heat

    SBC: MANTEL TECHNOLOGIES INC            Topic: N19AT013

    The U.S. Navy seeks methods to improve the fuel economy of marine diesel engines through utilization of waste heat. Low temperature engine jacket water, lubrication oil, and aftercooler air are largely untapped streams of thermal energy on these ships, but their utilization circumvents many operation challenges associated with exhaust gases. For example, variable and high exhaust gas temperatures ...

    STTR Phase I 2019 Department of DefenseNavy
  8. Power-Dense Electrical Rotating Machines for Propulsion and Power Generation

    SBC: CONTINUOUS SOLUTIONS Inc            Topic: N19AT007

    The primary objective is to develop electric machine/drive topologies and power architectures that achieve the power densities required for 50% more power without the increase in weight or space requirements. In addition to PMSM-based designs, two new machine topologies will be considered. The first is a trapped flux coreless (TFC) machine that utilizes superconducting pucks made of YBCO to produc ...

    STTR Phase I 2019 Department of DefenseNavy
  9. Out-of-Oven Aerospace Composites

    SBC: CORNERSTONE RESEARCH GROUP INC            Topic: N18BT031

    Large aerospace composite structures currently require autoclaves and ovens to achieve desired performance which are expensive to purchase, costly to operate, and often limit part size and production rate. Ovens and autoclaves rely on convective heating which is inefficient, consumes large amounts of energy, and can be difficult to predict. Alternative cure processes using external heaters or hot ...

    STTR Phase I 2019 Department of DefenseNavy
  10. Optimized Higher Power Microwave Sources

    SBC: XL SCIENTIFIC LLC            Topic: N19AT001

    Verus Research and the University of New Mexico (UNM) are pleased to respond to the Navy Phase I STTR solicitation N19A-T001 titled “Optimized Higher Power Microwave Sources.” Verus Research, in collaboration with UNM, propose to develop a GW-class, S-band, high power microwave (HPM) source to integrate in vehicle and vessel stopping systems. Our integrated approach ensures the objectives for ...

    STTR Phase I 2019 Department of DefenseNavy
US Flag An Official Website of the United States Government