You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Advanced Materials for the Design of Lightweight JP5/JP8/DS2 Fueled Engines for Unmanned Aerial Vehicles (UAVs)

    SBC: Northwest Uld, Inc.            Topic: N10AT001

    Northwest UAV Propulsion Systems proposes using our purpose built heavy fuel engine designed and built in the USA for small unmanned aerial systems in the tier 2 & 3 class. We will be adding a lightweight ceramic material set combined with FEA (Finite Element Analysis) and heavy fuel atomizer (IRAD Project) to create a lightweight engine for a SUAS or STUAS class UAVs. The Ceramic material set is ...

    STTR Phase I 2010 Department of DefenseNavy
  2. INTUITIVE NAVIGATION SYSTEM FOR EFFECTIVE COLLISION-AVOIDANCE TACTICS (INSECT)

    SBC: APTIMA INC            Topic: N08T005

    Vertical short takeoff and landing (VSTOL) operators face numerous challenges, particularly during takeoff, hover, and landing operations. Threats take the form of power lines, structures, and—in the case of combat—enemy fire. Often, these threats are obscured when visibility is compromised by dust, sand, or snow. Maintaining awareness of the surrounding environment becomes almost impossible. ...

    STTR Phase II 2010 Department of DefenseNavy
  3. Development of Improved High Strength, High Conductivity Refractory Materials for Rail Gun Launchers

    SBC: ADVANCED POWDER SOLUTIONS INC            Topic: N10AT025

    APS has assembled a world class team to address problems associated with rail gun launcher operation. APS has combined its unique processing experience with IAT's railgun design, testing and characterization experience to develop materials to improve rail gun performance. Phase I will be devoted to fabrication and testing of various samples in rail gun conditions. Phase II will focus on the manufa ...

    STTR Phase I 2010 Department of DefenseNavy
  4. High-Speed Method to Produce Flexible Pressure Sensors

    SBC: APPLIED NANOTECH, INC.            Topic: N10AT031

    The promise of printed electronics can not be realized without high-speed manufacturing processes to drive the cost down for wide spread distribution. This proposal will outline the key points for rapid manufacturing of new electronic devices and systems and make recommendations for making them a reality. There are two main focus areas that encompass all the limitations to printed integrated circu ...

    STTR Phase I 2010 Department of DefenseNavy
  5. Photo Triggered Carbon Nanotube Field Emission Cathode for Free Electron Lasers

    SBC: BUSEK CO., INC.            Topic: N10AT023

    Busek Co. Inc (Busek) and Massachusetts Institute of Technology (MIT) propose to develop the design of a photon actuated, ultrafast carbon nanotube (CNT) field emission cathodes for high-power electron beam accelerator sources. The cathode will be based on massive arrays of Vertically Aligned Carbon Nano-Fibers (VA-CNFs) that are individually controlled by a vertical ungated field effect transisto ...

    STTR Phase I 2010 Department of DefenseNavy
  6. Enhanced Riverine Drifter

    SBC: C-2 INNOVATIONS INC.            Topic: N10AT024

    The proposed Autonmous Reactive Ferrrying Drifter (ARF-D) provides wide measured swath, autonomously maintains a buffer distance from close-shore snags, and by utilizing river flow provides a very low power approach to obtaining cross-river surveying, providing greater coverage with minimal power penalty. By randomizing the cross-river transit paths multiple ARF-D units will naturally overcome the ...

    STTR Phase I 2010 Department of DefenseNavy
  7. FreeSwim: Autonomous Behaviors for Undersea Sensors

    SBC: CHARLES RIVER ANALYTICS, INC.            Topic: N10AT038

    Future naval operations are expected to make extensive use of unmanned vehicles to support a range of operations, including intelligence gathering, mine warfare, force protection, and anti-submarine warfare. Current unmanned systems are typically controlled remotely by an operator who directly manipulates a control interface for the vehicle. The effectiveness of this approach is obviously limited ...

    STTR Phase I 2010 Department of DefenseNavy
  8. Graded-Composition Refractory Coatings for Protection of Cu-Rails for Electromagnetic Launchers

    SBC: Engineered Coatings, Inc.            Topic: N10AT025

    The Navy is developing an electromagnetic (EM) launcher for long-range naval surface-fire-support. Severe operating conditions of the EM system place stringent requirements for materials, including high current and magnetic fields, high temperatures, contact with liquid metals, high stress/gouging from balloting contacts and high-speed-sliding electrical-contact with an Al armature. Engineered Coa ...

    STTR Phase I 2010 Department of DefenseNavy
  9. Low Cost High-rate Manufacturing of Flexible Explosive Detection Sensor

    SBC: Nanotrons            Topic: N10AT031

    Nanotrons Corporation, in collaboration with Professor Byungki Kim at NSF Nanomanufacturing Research Center at the University of Massachusetts Lowell (UML), proposes to develop the low-cost high-rate manufacturing technique for flexible explosive detection sensors to significantly increase sensitivity of detection of trinitrotoluene (TNT) explosives. The new approach combines cutting-edge nanomate ...

    STTR Phase I 2010 Department of DefenseNavy
  10. Real-time In-situ Adaptation of Decision Parameters for Undersea Target Tracking in a Sensor Field

    SBC: Intelligent Automation, Inc.            Topic: N10AT038

    Network-centric command and control of complex military missions (e.g., anti-submarine warfare, collaborative mine hunting, etc.) calls for cost-effective designs that can dynamically tradeoff multiple conflicting objectives. Often these optimizations have to be carried out at a higher level, and the associated control directives have to be disseminated down to a distributed system, thereby, influ ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government