You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Remotely Operated Vehicle (ROV) Deployed Underwater Attachment

    SBC: TEXAS RESEARCH INSTITUTE , AUSTIN, INC.            Topic: N19AT011

    Texas Research Institute Austin, Inc. (TRI/Austin) and Florida Institute of Technology (FIT) in the Phase I effort will implement the use of a revolutionary new class of adhesives to attach C4 to underwater mines. These adhesives are extraordinarily insensitive to water, tolerant of unprepared surfaces, and offer extremely rapid cure and excellent bond strength. These materials can be applied usin ...

    STTR Phase I 2019 Department of DefenseNavy
  2. Additive Manufacturing for Naval Aviation Battery Applications

    SBC: TEXAS RESEARCH INSTITUTE , AUSTIN, INC.            Topic: N18AT008

    Texas Research Austin (TRI-Austin) will continue to partner with the University of Texas, Austin, to use additive manufacturing for fabricating and optimizing the lithium ion and electroactive metal electrode systems for which the team established proof of concept in the Phase I base period. The Aerosol Deposition Method (ADM) is a broadly applicable additive manufacturing technology that has been ...

    STTR Phase II 2019 Department of DefenseNavy
  3. Propagation Established through Autonomous Raman Lidar (PEARL)

    SBC: SPECTRAL SCIENCES, INC            Topic: N19AT015

    Accurate characterization of and propagation modeling through the Marine Boundary Layer is critical for maximizing Electro-Magnetic (EM) systems signal exploitation for naval asset offensive, defensive, and stealth operational performance. Strong temperature and humidity gradients in the Surface Boundary Layer lead to optical paths exhibiting Electro-Optic Infrared (EOIR) anomalous refraction and ...

    STTR Phase I 2019 Department of DefenseNavy
  4. Quantum Cascade Laser Array with Integrated Wavelength Beam Combining

    SBC: PENDAR TECHNOLOGIES LLC            Topic: N19AT005

    Pendar Technologies proposes to develop the next generation of compact, high power quantum cascade laser (QCL) sources with output power exceeding 10 Watts at a wavelength of 4.6 microns. The proposed subsystem will include a DFB QCL array integrated monolithically with power amplifiers, low-loss passive waveguides resulting from ion implantation and optical elements aimed at realizing on-chip wav ...

    STTR Phase I 2019 Department of DefenseNavy
  5. Comprehensive Surf Zone Modeling Tool

    SBC: DYNAMIC DIMENSION TECHNOLOGIES, LLC            Topic: N19AT010

    The littoral and specifically surf zone regions with breaking waves, bathymetry, weather, currents, tides, obstacles, etc. create a dynamic environment that can be very challenging for conducting operations. Systems are being developed to increase situational awareness in this region, however expensive physical testing to verify performance is limited to specific areas and conditions. To supplemen ...

    STTR Phase I 2019 Department of DefenseNavy
  6. Quench Monitoring and Control System for High-Temperature Superconducting Coils

    SBC: ADVANCED CONDUCTOR TECHNOLOGIES LLC            Topic: N19AT016

    The Navy has been developing superconducting systems, based on high-temperature superconductors (HTS), for future use on Navy ships. One of the challenges associated with superconducting magnets is the possibility of a quench, which is an event where a local hot spot develops within the superconductor that quickly spreads throughout the device, driving it into its normal and dissipative state. Sen ...

    STTR Phase I 2019 Department of DefenseNavy
  7. Novel Development of an Intelligent Quench Detection (QD) Method for HTS Coils

    SBC: TAI-YANG RESEARCH COMPANY            Topic: N19AT016

    Energy to Power Solutions (e2P) has teamed with quench detection (QD) expert Dr. Yuri Lvovsky (retired GE), Dr. Sastry Pamidi of the Center for Advanced Power Systems (FSU-CAPS), and American Superconductor Corporation (AMSC) to design, fabricate, and test a robust, reliable, and low cost QD system. e2P’s proposed system is a vastly different quench avoidance system that will provide multiple le ...

    STTR Phase I 2019 Department of DefenseNavy
  8. Targeted Enhancement of Critical Composite Interfaces using Vertically Aligned Carbon Nanotubes

    SBC: N12 TECHNOLOGIES, INC.            Topic: N19AT003

    Vertically-aligned carbon nanotubes (VACNTs) will be selectively applied at interfaces in laminated composite structures to effect locally the mechanical properties that limit rotorcraft structures, such as fatigue and damage tolerance. In Phase I this work will quantify these effects in CFRP and CFRP/GFRP hybrid coupons. The VACNT material will be transferred directly onto prepreg plies, but also ...

    STTR Phase I 2019 Department of DefenseNavy
  9. Interlaminar Reinforcement of Composite Rotorcraft Components via Tailored Nanomorphologies of Aligned Carbon Nanotubes (A-CNTs)

    SBC: METIS DESIGN CORPORATION            Topic: N19AT003

    Composites are often used in aerospace applications due to their superior specific strength and stiffness properties, as well as their resistance to fatigue and corrosion. In particular for rotorcraft, composites offer additional benefits for their versatility in tailoring material properties for such components as rotor blades. However, rotors introduce additional challenges by including multiple ...

    STTR Phase I 2019 Department of DefenseNavy
  10. Additive Manufacturing for Li-Ion Batteries (Phase II)

    SBC: PHYSICAL SCIENCES INC.            Topic: N18AT008

    Physical Sciences Inc. (PSI) will construct and demonstrate Li-ion cells for Naval Aviation applications using solvent free additive manufacturing techniques. Lithium-ion batteries simultaneously offering high energy and power density will be demonstrated using novel solvent-free electrode feedstocks. PSI will work with the Complex Fluids Lab (CFL) at the University of Connecticut to optimize the ...

    STTR Phase II 2019 Department of DefenseNavy
US Flag An Official Website of the United States Government