You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Electronically Dimmable Eye Protection Devices (EDEPD)

    SBC: Alphamicron, Inc.            Topic: AF18BT003

    The team of AlphaMicron Inc. and Kent State University proposes a novel LC technology, the dynamic polarizer, as a light control system for Battlefield Airmen and Pilots. The dynamic polarizer technology shares the performance capabilities of AlphaMicron’s e-Tint LC light control technology: instantaneously fails-to-clear, millisecond switching times, and customizable tint and color. Howeve ...

    STTR Phase I 2019 Department of DefenseAir Force
  2. Wave-Optic Propagation Computation Enabled by Machine Learning Algorithms (WOPA)

    SBC: Luminit LLC            Topic: AF18BT004

    To address the U.S. Air Force need for Developing innovative wave-optics Propagation methods to model laser systems that are faster, efficient and more accurate, Luminit, LLC, and University of Southern California (USC) propose to develop Wave-Optic Propagation Computation Enabled by Machine Learning Algorithms (WOPA). The proposed algorithms will be based on cutting off redundant frequencies upon ...

    STTR Phase I 2019 Department of DefenseAir Force
  3. Regional Radio Frequency Attenuation and Interference Monitor (RF-AIM)

    SBC: Silvus Technologies, Inc.            Topic: AF18BT005

    Silvus Technologies and the University of California Los Angeles propose a system design and a rapid development path for the Regional Radio Frequency Attenuation and Interference Monitor, or ‘RF-AIM’. RF-AIM is intended to provide continuous wide area awareness of RF spectrum availability in the presence of arbitrary interference and attenuation from natural or man-made causes. The t ...

    STTR Phase I 2019 Department of DefenseAir Force
  4. Carbon Nanotube FET Modeling and RF Circuit Simulation

    SBC: Electronics of the future, Inc..            Topic: AF18BT006

    The project will develop and validate a geometry scalable CNTFET compact model for HF circuit design and extract the model parameters from the measured characteristics of the fabricated devices. The ballistic and quasi-ballistic transport, quantum and parasitic effects will be accounted for the predicted performance will be compared to 130 nm RF Si-CMOS to determine the conditions for breaking eve ...

    STTR Phase I 2019 Department of DefenseAir Force
  5. Multiphysics Modeling of Dynamic Combustion Processes Using Pareto-Efficient Combustion Framework

    SBC: STREAMLINE NUMERICS, INC.            Topic: AF18BT010

    The objective is to develop zonal multi-physics capability for turbulent combustion simulations. The foundation of the proposed work is a novel Pareto-Efficient Combustion (PEC) framework for fidelity-adaptive combustion modeling. The PEC model utilizes a combustion submodel assignment, combining the low-cost flamelet-based models with the more expensive finite rate chemistry models where necessar ...

    STTR Phase I 2019 Department of DefenseAir Force
  6. Vibration imaging for the characterization of extended, non-cooperative targets

    SBC: Guidestar Optical Systems, Inc.            Topic: AF19AT006

    Locating objects that vibrate is a way to discern potential threats and locate targets. However, current vibrometry technology typically measures only the global vibration of target and cannot create an extended spatial measurement of the vibration profile of the target. These solutions cannot identify what the target is, nor can they locate potential weak spots on the target, because they lack sp ...

    STTR Phase I 2019 Department of DefenseAir Force
  7. Optimization of Sodium Guide Star Return using Polarization and/or Modulation Control

    SBC: Applied Optimization, Inc            Topic: AF19AT008

    The research objective of the proposed work is to increase the efficiency of the laser return of a Sodium Guide Star Laser (SGSL) reflected off the sodium layer for increased reliability and applicability of the artificial guide star technique. During Phase I, we will demonstrate the concept of maximizing the SGSL signal returns using numerical simulations that account for the effects of atmospher ...

    STTR Phase I 2019 Department of DefenseAir Force
  8. Autonomous Decision Making via Hierarchical Brain Emulation-- 19-009

    SBC: METRON, INCORPORATED            Topic: AF19AT009

    The objective of this project is to develop human intelligence-inspired algorithms that exploit multi-modal sources of low and high quality data to achieve a series of objectives such as detection, localization, tracking, and classification. A Bayesian model-based hierarchical adaptive decision making (HADM) algorithm will be developed which includes multiple levels of decision making organized in ...

    STTR Phase I 2019 Department of DefenseAir Force
  9. Virtual Reality for Multi-INT Deep Learning (VR-MDL)

    SBC: Information Systems Laboratories, Inc.            Topic: AF19AT010

    Recent advances and successes of deep learning neural networks (DLNN) techniques and architectures have been well publicized over the last several years. Voluminous, high-quality and annotated training data, or trial and error in a realistic environment, is required to achieve the promised performance potential of DLNNs. Unfortunately for DoD and/or Intelligence Community (IC) applications of mult ...

    STTR Phase I 2019 Department of DefenseAir Force
  10. High Energy, Safe, and Long-Life Next Generation Batteries Using Liquefied Gas Electrolytes

    SBC: SOUTH 8 TECHNOLOGIES, INC.            Topic: AF19AT014

    The team at South 8 Technologies is the first to develop a novel and patented Liquefied Gas Electrolyte chemistry for rechargeable lithium metal batteries which meets these Air Force requirements. The proposed non-hazardous chemistry has already demonstrated world-record performance on the lithium metal anode (99.9% plating/stripping efficiency over hundreds of cycles) while maintaining high perfo ...

    STTR Phase I 2019 Department of DefenseAir Force
US Flag An Official Website of the United States Government