You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Orthogonal Chip Based Electronic Sensors for Chemical Agents

    SBC: SEACOAST SCIENCE, INC.            Topic: AF08T015

    Recent years have seen a shift in threats to US national security. Today increasing focus for national security is management of terrorist activities. Deliberately exposing a civilian population to chemicals and explosives to cause harm represents a looming terrorist threat. Early detection and identification is a difficult but essential element to minimizing the threat. The Seacoast Science/U ...

    STTR Phase II 2010 Department of DefenseAir Force
  2. Fabrication Technology for Oxide Film Heterostructure Devices

    SBC: STRUCTURED MATERIALS INDUSTRIES, INC.            Topic: AF08BT22

    In this STTR program, Structured Materials Industries, Inc. (SMI) and our partners are developing commercially viable fabrication technology for oxide heterostructure based nanoelectronic devices. Oxide heterostructures, consisting of a polar oxide such as LaAlO3 and a non-polar oxide such as SrTiO3, offer a novel route to building nanoelectronic devices. The benefits of these devices will inclu ...

    STTR Phase II 2010 Department of DefenseAir Force
  3. Graphene Production Tool

    SBC: STRUCTURED MATERIALS INDUSTRIES, INC.            Topic: AF08BT10

    In this STTR program, Structured Materials Industries, Inc. (SMI) and Cornell University are developing a flexible graphene film deposition system, for both research and production applications. In Phase I, our team demonstrated technical feasibility of scaling existing graphene process technology at Cornell to large wafer sizes. We demonstrated high quality graphene films by both silicon sublim ...

    STTR Phase II 2010 Department of DefenseAir Force
  4. Orthogonal Chip Based Electronic Sensors for Chemical Agents

    SBC: SEACOAST SCIENCE, INC.            Topic: AF08T015

    Recent years have seen a shift in threats to US national security. Today increasing focus for national security is management of terrorist activities. Deliberately exposing a civilian population to chemicals and explosives to cause harm represents a looming terrorist threat. Early detection and identification is a difficult but essential element to minimizing the threat. The Seacoast Science/U ...

    STTR Phase II 2010 Department of DefenseAir Force
  5. Small Sample Size Semi-Supervised Feature Clustering for Detection and Classification of Objects and Activities in Still and Motion Multi-spectral Imagery

    SBC: TOYON RESEARCH CORPORATION            Topic: AF15AT35

    Toyon Research Corp. and the Penn State Univ. propose research and development of innovative algorithms for classifying objects and activities observed in high-dimensional data extracted from multi-sensor motion imagery. The proposed algorithms include novel feature clustering techniques to enable effective characterization of intra-class and inter-class appearance variations in datasets containin ...

    STTR Phase II 2016 Department of DefenseAir Force
  6. Rapid Discovery of Evasive Satellite Behaviors

    SBC: Data Fusion & Neural Networks, LLC            Topic: AF17CT02

    The problem addressed in this effort is to automatically learn historical ephemeris space catalog time, position, and velocity entity track update error uncertainties (i.e., without track error covariances) and to automatically (e.g., without expert event labeling) produce: – unmodeled non-gravitational space catalog update flags – abnormal unmodeled catalog update flags with abnorma ...

    STTR Phase II 2019 Department of DefenseAir Force
  7. Robust Model for Behavior of Complex Materials during Spin Testing

    SBC: SYMPLECTIC ENGINEERING CORP            Topic: AF08T013

    The objective of this project is to develop a practical finite element-based simulation of spin-pit tests of disks. The performance of disks in spin-pit tests critically depends on localized effects, such as residual stresses, dislocations, and microstructure gradients. Therefore, a two-scale modeling approach is adopted. At the global-scale, the disk is represented by means of finite elements wit ...

    STTR Phase II 2010 Department of DefenseAir Force
  8. Low-Latency Embedded Vision Processor (LLEVS)

    SBC: PERCEPTIVE INNOVATIONS, INC.            Topic: AF15AT13

    High-performance low-latency image processing is needed in next-generation DoD vision systems. In LLEVS Phase II, we bring low-latency digital imaging and future fusion applications to the warfighter, in a scalable small-SWaP product footprint leveraging COTS technology.We have a very detailed LLEVS FPGA design resulting from our Phase I efforts. We understand the entire critical path of the desig ...

    STTR Phase II 2016 Department of DefenseAir Force
  9. Fast Updatable Large-area Holographic Display

    SBC: NEW SPAN OPTO-TECHNOLOGY, INC.            Topic: AF08T001

    Two-dimensional (2D) visualization techniques have limit capacity to achieve understanding of full dimensionality of the battlefield. Rewritable 3D holographic storage is promising for updatable 3D display applications. In Phase I, New Span Opto-Technology has demonstrated novel concepts of both holographic recording technique and recording material system without the use of high voltage. We have ...

    STTR Phase II 2010 Department of DefenseAir Force
  10. Fast Updatable Large-area Holographic Display

    SBC: NEW SPAN OPTO-TECHNOLOGY, INC.            Topic: AF08T001

    Two-dimensional (2D) visualization techniques have limit capacity to achieve understanding of full dimensionality of the battlefield. Rewritable 3D holographic storage is promising for updatable 3D display applications. In Phase I, New Span Opto-Technology has demonstrated novel concepts of both holographic recording technique and recording material system without the use of high voltage. We have ...

    STTR Phase II 2010 Department of DefenseAir Force
US Flag An Official Website of the United States Government