You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Impact of Hypersonic Flight Environment on Electro-Optic/Infrared (EO/IR) Sensors

    SBC: Analysis and Applications Associates, Inc.            Topic: AF15AT40

    ABSTRACT: Analysis and Applications and Associates, Inc. (AAA) proposes to develop software that evaluates effects of the hypersonic flow environment on electro-optic/infrared optical systems and vehicles for specific hypersonic flight profiles. We propose a high fidelity definition of the near-field flow, using the latest CFD and turbulence modeling technologies, to determine the environment from ...

    STTR Phase I 2015 Department of DefenseAir Force
  2. Design, Reconfigure, and Evaluate Autonomous Models in Training

    SBC: Tier 1 Performance Solutions, LLC            Topic: AF15AT14

    ABSTRACT: The proliferation of autonomous- and human-machine systems necessitates the creation of new tools for system design and evaluation. Key among these are simulation testbeds that support interactions between multiple warfighters and systems, and methods for creating and integrating intelligent agent models into simulation environments. We see a significant opportunity to advance the state ...

    STTR Phase I 2015 Department of DefenseAir Force
  3. Physical Sub-Model Development for Turbulence Combustion Closure

    SBC: COMBUSTION SCIENCE & ENGINEERING, INC.            Topic: AF13AT12

    ABSTRACT: The U. S. Air Force needs turbulent combustion models that can be used to simulate combustion in actual propulsion systems at both design and off-design conditions, not models that are only useful for highly idealized problems. With this motivation in mind, Combustion Science & Engineering, Inc. and the Computational Combustion Lab at Georgia Tech plan to enhance current capabilities to ...

    STTR Phase II 2015 Department of DefenseAir Force
  4. Low-Latency Embedded Vision Processor (LLEVS)

    SBC: SA Photonics, Inc.            Topic: AF15AT13

    ABSTRACT: Digital binocular helmet-mounted display (HMD) systems are now available that allow high resolution wide field-of-view (WFOV) digital imagery to be displayed on high resolution microdisplays. These digital HMD systems require a low-latency embedded vision processor (LLEVS) capable of implementing the necessary image processing algorithms. An SA Photonics LLEVS will be implemented on next ...

    STTR Phase I 2015 Department of DefenseAir Force
  5. Evaluation of SANDGT Using SOA Framework for Persistent and Risk-Averse Space Situation Awareness

    SBC: INTELLIGENT FUSION TECHNOLOGY, INC.            Topic: AF12BT09

    ABSTRACT: Space superiority needs protected tactical space communications with dynamic spectrum sharing, routing adaptation and interference mitigations against kinetic and non kinetic threats. The main focus of this project is to develop game-theoretic analytics and frameworks to support the Air Forces autonomy science & technology strategy (e.g., "deterrence" posture which in turn may be enabled ...

    STTR Phase II 2015 Department of DefenseAir Force
  6. Evaluation of High Performance Computing Enabled Multiple-Target Tracking Based on Massive Parallelism for Urban Surveillance Areas

    SBC: INTELLIGENT FUSION TECHNOLOGY, INC.            Topic: AF13AT10

    ABSTRACT: Threat detection of people, vehicles, and others as well as person-vehicle interactions (dismounts) of possible malicious intent are difficult problems due to the complexity of the problem space. The wide area motion imagery (WAMI) systems aid analysts to track and identify dismounts, but typically produce an overwhelmingly large amount of information. The large scale data input challeng ...

    STTR Phase II 2015 Department of DefenseAir Force
  7. Harness Enhanced Awareness for Radio System (HEARS) for Dynamic Spectrum Access in Space Application

    SBC: INTELLIGENT FUSION TECHNOLOGY, INC.            Topic: AF13AT02

    ABSTRACT: In this project, IFT and its academic partner GMU developed an innovative Harness Enhanced Awareness for Radio Systems (HEARS) framework and technical underpinnings for DSA systems operating under conditions of imperfect knowledge, and used the framework to address challenging problems in satellite communication (SATCOM)DSA. As the logical core of the HEARS, Multi-Entity Bayesian Network ...

    STTR Phase II 2015 Department of DefenseAir Force
  8. Enhanced Text Analytics Using Lifted Probabilistic Inference Algorithms

    SBC: Longview International Inc.            Topic: AF13AT11

    ABSTRACT: LVI proposes developing an advanced framework of lifted probabilistic inference algorithms for enhancing the scaling and accuracy of text analytics. In Phase I, LVI explored the scalability of various lifted inference techniques for utilizing Markov Logic Networks (MLN) in the Tuffy software package. Phase I also included investigation and demonstration of DeepDive, a scalable, high-per ...

    STTR Phase II 2015 Department of DefenseAir Force
  9. Electrically Small Multiferroic Antennas

    SBC: SA Photonics, Inc.            Topic: AF14AT12

    ABSTRACT: We exploit recent advances in magnetoelectric/piezoelectric (ME/PE) composite materials to enable the development of efficient sub-wavelength radio frequency (RF) transmitting antennas. With these materials will be possible to achieve high dielectric permittivity and magnetic permeability, slow electromagnetic propagation and low RF loss tangents. Together, these special properties m ...

    STTR Phase I 2015 Department of DefenseAir Force
  10. Embedded Sensors for Flight Test (Every Aircraft a Test Aircraft)

    SBC: Nextgen Aeronautics, Inc.            Topic: AF14AT01

    ABSTRACT: Two accelerating trends in military aircraft design and development are apparent: (1) increasing system capabilities in terms of weapon systems, ISR payloads, guidance, navigation and control (GNC), etc., enabled by ever-smaller and evermore capable electronics; and (2) reduction in overall size and available space for auxiliary equipment (and associated wiring, etc.) to measure and asse ...

    STTR Phase I 2015 Department of DefenseAir Force
US Flag An Official Website of the United States Government