You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Polarization switching VCSEL (P-VCSEL)

    SBC: ZIVA CORPORATION            Topic: ST092003

    Ziva Corporation in collaboration with UCSB will assess the feasibility of developing a directly modulated polarization switching laser based on the Vertical Cavity Surface Emitting Laser (VCSEL) geometry with a 3dB frequency of at least 10 GHz. This will be a major breakthrough in the ability to cost effectively fabricate directly modulated lasers (even in 2-D arrays) with polarization diversity ...

    STTR Phase I 2010 Department of DefenseDefense Advanced Research Projects Agency
  2. Random Number Generation for High Performance Computing

    SBC: Silicon Informatics, Inc.            Topic: A10AT012

    Highly scalable parallel random number generators (RNGs) will be developed, evaluated and implemented for use in high performance computing on thousands of multi-core processors and general purpose graphics processing units. The main contributions are: (a) design and implementation of new parallel test methods that capture the inter-stream correlations exhibited in practice and complement the curr ...

    STTR Phase I 2010 Department of DefenseArmy
  3. Advanced High Power Solid-State Burst Generator

    SBC: NESS ENGINEERING, INC.            Topic: AF09BT14

    Recent advances in dielectric and magnetic materials have spurred renewed interest in the field of solid state pulse and RF burst generation using Non-Linear Transmission Lines (NLTL) . The NLTL approach to HPM and UWB generation eliminates the need for an electron beam, vacuum system and magnets required in conventional HPM sources. Furthermore, the novel waveforms of NLTL generated pulses promi ...

    STTR Phase I 2010 Department of DefenseAir Force
  4. Impact of Climate Change on Military Compounds in the Environment

    SBC: Environmental Quality Management            Topic: A09AT024

    This will facilitate the development of remedial approaches for existing facilities and assist in planning new facilities, logistics, and procedures to protect the environment without impairing critical mission functionality. The commercial application will include software distribution and updates.

    STTR Phase I 2010 Department of DefenseArmy
  5. New Thruster for Proliferated Satellites Has More Force and Longer Life

    SBC: The Granville Group Inc.            Topic: ST092005

    Granville has designed a new satellite/spacecraft propulsion engine, GREP, delivering over 100.mN/1.0 kW of force from strong electromagnetic energy… more force magnitude and efficiency than existing propellant limited ion thrusters. And, because it uses renewable power from on-board solar/electric panels, GREP offers extended propulsion maneuver life, up to 15 years or more, substantially lon ...

    STTR Phase I 2010 Department of DefenseDefense Advanced Research Projects Agency
  6. Software Defined Multi-Channel Radar Receivers for X-band Radars

    SBC: DGNSS Solutions, LLC            Topic: MDA09T003

    The primary objective of the proposed research is to develop proof of concept of a software programmable X-Band radar system using low cost antenna array technology with digital beamforming architecture based on multiple receiver channels. The performance objectives will aim at a minimum of 400 MHz instantaneous bandwidth and a minimum instantaneous dynamic range of 52 dB. The objective of the t ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  7. Development of a Computational Method for Prediction of After-Burning Effect

    SBC: BUSA Engineering Consulting            Topic: N10AT002

    This proposal is being submitted in response to the solicitation topic N10A-T002 (Development of a Computational Method for Prediction of After Burning Effect) by BUSA Engineering Consulting (Dr. Jianghui Chao) in collaboration with University of Florida (PI: Prof. S. Balachandar). The overall objective of the proposed effort is to contribute to national defense and security by advancing the state ...

    STTR Phase I 2010 Department of DefenseNavy
  8. Development of Navy Wave Rich Collaboration for Command and Control

    SBC: G2 Software Systems, Inc.            Topic: N10AT045

    G2 Software Systems (G2SS) proposes to explore all features of Google Wave to develop practices and extensions to support Navy Command and Control (C2) processes. The C2 practices and extensions include tools for collaborative problem analysis, collaborative planning, knowledge sharing, knowledge awareness (searching and registering for critical information requirements), knowledge context (includ ...

    STTR Phase I 2010 Department of DefenseNavy
  9. Instrumentation for Nanoscale Spectroscopy

    SBC: R H K Technology, Inc.            Topic: AF08BT30

    This STTR will provide a prototype Electronics Package that integrates disparate streams of spectrographic and topographic data to provide high resolution imaging and chemical specificity at the nanoscale. It will enable development of a commercial instrument delivering routine near-field tip-enhanced optical imaging with spatial resolutions in the range of 10-50nm along with topographic (Atomic F ...

    STTR Phase I 2010 Department of DefenseAir Force
  10. Novel nonclassical-light-assisted protocols for quantum key distribution

    SBC: MATHSENSE ANALYTICS            Topic: AF09BT21

    The key to making quantum key distribution practical (especially for free-space applications) is to be able to use weak laser pulses (WLP) instead of single photons, while at the same time making sure that any third party wanting to avoid detection and mount an eavesdropping attack is restricted to using beam-splitting rather than photon-number splitting (PNS). In this effort, we propose a novel s ...

    STTR Phase I 2010 Department of DefenseAir Force
US Flag An Official Website of the United States Government