You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. A Rapid Optical Approach to Quantitative Composite Bond Quality Assessment

    SBC: SPECTRAL SCIENCES INC            Topic: N13AT011

    Composite materials are widely used in aircraft to reduce weight and cost, improve structural performance, and boost fuel efficiency. However, composites are susceptible to adhesive bond quality issues, including kissing bonds which may occur because of initial fabrication or service related issues. Detection of such weakened bonds requires an easily used detection approach to routinely monitor co ...

    STTR Phase I 2013 Department of DefenseNavy
  2. LEARNING-BASED APPROACH FOR RELEVANT DATA EXTRACTION (LARDE)

    SBC: ROBOTIC RESEARCH OPCO LLC            Topic: N13AT016

    Autonomous systems continue to be outfitted with larger amounts of sensors that are capable of collecting extremely large amounts of data over the course of a mission. Even autonomous systems with high storage capacities can run into storage limitations when burdened with large amounts of sensor data over long mission durations. This proposal will develop a Learning-based Approach for Relevant Dat ...

    STTR Phase I 2013 Department of DefenseNavy
  3. Gallium Nitride (GaN)-based High Efficiency Switch/Transistor for L-Band RF Power Amplifier Applications

    SBC: MIMOCLOUD INC            Topic: N13AT025

    This research seeks to develop a method of developing solid-state power amplifiers that operate at 300 Volts, achieve 100 Watt output and greater than 90% efficiency at 1 GHz with 10% bandwidths. We will seek to demonstrate switch-mode amplifiers that use a novel gate design with Gallium Nitride forming the basis for solid state power amplification.

    STTR Phase I 2013 Department of DefenseNavy
  4. Progressive Model Generation for Adaptive Resilient System Software

    SBC: SECURBORATION, INC.            Topic: N13AT014

    Complex software systems are typically developed by disparate engineering teams working concurrently. At the same time, software requirements are frequently dynamic, evolving even during active development cycles. Discrepancies between how software is defined and how it is implemented at the modular level can cascade into critical system errors when modules are integrated. More troubling is that i ...

    STTR Phase I 2013 Department of DefenseNavy
  5. Compact robust testbed for cold-atom clock and sensor applications

    SBC: COLDQUANTA, INC.            Topic: N13AT018

    As strontium and other alkaline-earth metals become increasingly attractive for ultracold-atom applications, there is a growing need to develop compact, robust systems for cooling, trapping, and studying these elements. In this proposal, ColdQuanta will team with Dr. Jun Ye at JILA and the University of Colorado at Boulder to develop a portable, turn-key system that can produce, utilize, and optic ...

    STTR Phase I 2013 Department of DefenseNavy
  6. Ship Wake Velocity Mapping Using InstantEye MAV

    SBC: PHYSICAL SCIENCES INC.            Topic: N13AT015

    Physical Sciences Inc. (PSI) and their academic partner, West Virginia University (WVU), are pleased to propose a uniquely innovative approach to measuring the three-dimensional air wake velocity field behind ship structures and towers. The velocity data is needed to support the validation of CFD models that will ultimately be used to provide sufficient safety margins for ship aircraft operations ...

    STTR Phase I 2013 Department of DefenseNavy
  7. High-Temperature Metamaterial Emitter For Thermophotovoltaics

    SBC: PHYSICAL SCIENCES INC.            Topic: N13AT017

    Physical Sciences Inc. (PSI), in collaboration with Sandia National Laboratories, proposes to develop a high energy density (HED) power source based on the principles of thermophotovoltaics (TPV). The core technology of the HED power source is a novel high-temperature, spectrally-selective metamaterial emitter with a tailored emission spectrum matched to the external quantum efficiency spectrum of ...

    STTR Phase I 2013 Department of DefenseNavy
  8. Intelligence and Intuition for Enhanced Decision Making (I2EDM)

    SBC: MODUS OPERANDI INC            Topic: N13AT024

    The focus of our Intelligence and Intuition for Enhanced Decision Making (I2EDM) Phase 1 research is to provide efficient and timely automated production and dissemination of information products in support of doctrinal Decision Points for the Company and below in austere environments. Operating in the Cloud, I2EDM will continuously fuse tactical information with human intuition and experience to ...

    STTR Phase I 2013 Department of DefenseNavy
  9. Advanced Thin-film Battery Development

    SBC: FLEXEL LLC            Topic: N11AT006

    We propose developing high energy density, non-toxic, environmentally friendly zinc-water battery system, which can be manufactured in various form factors including flexible cells, based on novel metal hydrated ruthenium (IV) oxide chemistry. The cells are flexible and have a low recharge voltage. This makes them useful in a variety application as well (mounted on air frame support elements to m ...

    STTR Phase II 2013 Department of DefenseNavy
  10. Low-Cost High Power Surface Emitting Micro-Stripe Quantum Cascade Laser Arrays

    SBC: EOS Photonics            Topic: N13AT006

    We envision a coherently coupled QCL array architecture featuring 2nd order DFB gratings to vertically couple out light with excellent beam quality and high output power. This approach does not require cleaving of the devices or facet coatings and is therefore inherently more robust and manufacturable than facet emitters.

    STTR Phase I 2013 Department of DefenseNavy
US Flag An Official Website of the United States Government