You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Detecting Substandard, Nonconforming, Improperly Processed and Counterfeit Materiel

    SBC: Ocean Bay Information and Systems Management, LLC            Topic: DLA15C001

    Inspecting for and detecting counterfeit, unapproved material substitutions or substandard processed raw material using existing processes is difficult, time consuming and expensive.Ocean Bay, LLC and the Primary Investigator, Karen Bruer, formed a team consisting of Ocean Bay, LLC, Savanah River National Laboratory and Old Dominion University, to apply for DLA15C-001:Detecting Substandard, Noncon ...

    STTR Phase II 2017 Department of DefenseDefense Logistics Agency
  2. Embedded Space Analytics

    SBC: INFOBEYOND TECHNOLOGY LLC            Topic: N16AT020

    Navy needs a real-time graph embedding tool for analyzing huge graphs (millions of nodes and billions of edges) from diverse sources. However, current approaches cannot provide dynamic and scalable graph analytics to signify the military value of tactical data. In this project, InfoBeyond advocates EStreaming (Embedding & Streaming) for scalable and efficient graph streaming. EStreaming promotes b ...

    STTR Phase II 2017 Department of DefenseNavy
  3. Advanced Printed Circuit Board Design Methods for Compact Optical Transceiver

    SBC: ATTOLLO ENGINEERING, LLC            Topic: A15AT001

    As the warfighter is increasingly using more highly integrated instruments, e.g. a laser rangefinder (LRF) combined with a laser designator and an imager, the need to decrease the size of these components becomes more important.Compact small munition applications of rangefinders particularly place an emphasis on size of the optical front end.In order to make the transceiver more compact, special a ...

    STTR Phase II 2017 Department of DefenseArmy
  4. Lightweight, Stable Optical Bench with Integrated Vibration Attenuation

    SBC: SAN DIEGO COMPOSITES, INC.            Topic: MDA13T007

    The goal of this program is to design a lightweight optical bench capable of remaining stable under temperature and moisture changes, while isolating the precision optical array from vibrations such as engine noise and air turbulence. By integrating a customizable periodic stack in the bench, vibrations are attenuated more effectively than commercially available mounts. Additionally, the periodic ...

    STTR Phase II 2016 Department of DefenseMissile Defense Agency
  5. Scalable System for Precision Direction-Finding, Anti-Jam, and Anti-Spoof

    SBC: TOYON RESEARCH CORPORATION            Topic: A15AT013

    The Global Positioning System (GPS) is vulnerable to radio-frequency (RF) sources of interference and must be defended through electronic protection (EP) measures such as anti-jam (AJ) and anti-spoof (AS). The Phase I effort investigated antenna, electronic, and algorithmic designs for systems capable of supporting direction-finding (DF) measurements while simultaneously performing anti-jam and an ...

    STTR Phase II 2017 Department of DefenseArmy
  6. Aircraft Carrier-based Precision Ship-Relative Navigation Guidance for Aircraft Landing under Emissions Control Conditions

    SBC: SA PHOTONICS, LLC            Topic: N15AT014

    SA Photonics has developed a concept for our Multiple Optical Beam Landing System (MOBLS) to provide autonomous landing of aircraft in RF denied environments. MOBLS utilizes multiple, redundant methods to determine the real-time location and bearing of the aircraft relative to the carrier-based landing strip. By having built in redundant modalities, MOBLS provides highly reliable landing informati ...

    STTR Phase II 2017 Department of DefenseNavy
  7. Deep Learning with Whole-Scene Contextual Reasoning for Target Characterization

    SBC: EXOANALYTIC SOLUTIONS INC            Topic: MDA15T001

    ExoAnalytic Solutions is developing DEEPR (Deep Learning with Whole-Scene Contextual Reasoning for Object Characterization), an advanced multi-sensor multi-object classifier for integrated object characterization. The overall objective of DEEPR is to develop a suite of advanced, novel techniques that combine innovative advances in deep, hierarchical machine learning together with recurrent Deep L ...

    STTR Phase II 2017 Department of DefenseMissile Defense Agency
  8. High Fidelity Rotorcraft Towing Modeling and Simulation with Towed Magnetic Anomaly Detection System

    SBC: ADVANCED ROTORCRAFT TECHNOLOGY, INC.            Topic: N15AT009

    Towing of a Magnetic Anomaly Detection (MAD) system is an important aspect of rotorcraftmaritime operation. The oscillatory rotorcraft combined with the long and flexible towingcable, the low mass ratio of the towed body to the towing aircraft, and the rotor wake effecton the towed body presents a challenge for integration of a modern MAD system withrotorcraft platform. The research objective is t ...

    STTR Phase II 2016 Department of DefenseNavy
  9. SOCRATES Maritime Multi-access Optical Communication System

    SBC: SA PHOTONICS, LLC            Topic: N16AT024

    SA Photonics is pleased to propose the SOCRATES free space optical communication and sensing system featuring the Photonic Optical Multicast Mast Unit (POMMU). SOCRATES enables 360 degree multicast capability of high bandwidth communication in addition to threat search and tracking capability. SA Photonics will team with Prof. Michael Kudenov at North Carolina State University who will investigate ...

    STTR Phase II 2017 Department of DefenseNavy
  10. High Gain, High Power PCSS with Integrated Monolithic Optical Trigger

    SBC: Eureka Aerospace            Topic: A14AT004

    This proposal addresses the problem of PCSS/laser trigger integration using a single monolithic laser diode array, thus simplifying the entire optical delivery network necessary for efficient operation of PCSSs. The proposal constitutes a logical continuation of Phase I effort where the main focus was on the detailed design of the PCSS/laser diode array (LDA) integrated architecture. In Phase II ...

    STTR Phase II 2016 Department of DefenseArmy
US Flag An Official Website of the United States Government