You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Compact Mode-Hop Free Narrow Line Turnkey Laser System for Quantum Technology

    SBC: OEWAVES, INC            Topic: A18BT014

    In this Project OEwaves Inc. in collaboration with the UCLA trapped-ion quantum computing group proposes to develop extended-cavity ultra-stable diode laser systems that have the properties required for quantum computing and metrology. The system will be based on a semiconductor laser locked to a monolithic microcavity (a whispering gallery mode resonator, WGMR [1]) using a self-injection locking ...

    STTR Phase I 2019 Department of DefenseArmy
  2. (SMET) Tele-Operation Feedback System

    SBC: TRITON SYSTEMS, INC.            Topic: A18BT025

    Triton Systems Inc. will work in collaboration with an academic partner to develop a model for a system to dynamically calculate the Center of Gravity (CoG) of a wheeled Squad Multipurpose Equipment Transfer (SMET) vehicle. The Army has tested several SMET vehicles of varying widths and heights and arrived at the conclusion that they ALL roll over, particularly if the vehicle is traversing the ter ...

    STTR Phase I 2019 Department of DefenseArmy
  3. Circuit Integration for Robust Quantum Information Technology Scalability (CIRQuITS)

    SBC: VECTOR ATOMIC INC            Topic: A18BT014

    Vector Atomic will develop precision, ultra-low noise laser control electronics with low cost, size, weight, and power (C-SWaP). The electronics will be designed to broadly support the various laser types of used for quantum technology, which span 369-1550 nm. The C-SWaP and system architecture will support scaling of quantum systems to higher laser counts. The design will also include essential f ...

    STTR Phase I 2019 Department of DefenseArmy
  4. Marburg Virus Prophylactic Medical Countermeasure

    SBC: MAPP BIOPHARMACEUTICAL, INC.            Topic: CBD18A002

    There are currently no vaccines or therapeutics available for Marburg Virus Disease (MVD). Given the specter of weaponization and the terriblemorbidity and high mortality rate of MVD, this represents a critical threat to the operational readiness of the Warfighter. While traditionalvaccines have proven to be a huge contribution to public health, they do have some limitations especially in the cont ...

    STTR Phase I 2018 Department of DefenseOffice for Chemical and Biological Defense
  5. Circulating Diagnostic Markers of Infectious Disease

    SBC: PATHOVACS INCORPORATED            Topic: CBD18A001

    The focus of this STTR phase I component is on proof-of-concept studies demonstrating applicability of technical approaches for identificationof circulatory diagnostic markers for infectious disease. Therefore, the primary objective of this project is to determine feasibility of one suchtechnical approach called Proteomics-based Expression Library Screening (PELS), for identification of pathogen-d ...

    STTR Phase I 2018 Department of DefenseOffice for Chemical and Biological Defense
  6. Marburg Virus Prophylactic Medical Countermeasure

    SBC: Flow Pharma, Inc.            Topic: CBD18A002

    Flow Pharma, Inc. is a biotechnology company in the San Francisco Bay Area developing fully synthetic cytotoxic T lymphocyte (CTL)stimulating peptide vaccines for Marburg virus. The FlowVax vaccine platform allows us to create dry powder formulations of biodegradablemicrospheres and TLR adjuvants incorporating class I and class II T cell epitopes. FlowVax vaccines can be designed for delivery by i ...

    STTR Phase I 2018 Department of DefenseOffice for Chemical and Biological Defense
  7. Paper Spray Mass Spectrometry Cartridges with Integrated Sampling and Enrichment

    SBC: Nano Terra, Inc.            Topic: A18BT020

    PS-MS is a simple and powerful method for rapid ambient sample preparation. However, its simplicity also means separation of undesirable components (particulates and molecular interferents) is not possible. Furthermore, samples must be collected by other means (e.g., dried blood spot cards) and placed on the ticket in liquid form before analysis. Although the technique is sensitive (nanograms to t ...

    STTR Phase I 2019 Department of DefenseArmy
  8. System for Nighttime and Low-Light Face Recognition

    SBC: Systems & Technology Research LLC            Topic: SOCOM18A001

    Face recognition performance using deep learning has seen dramatic improvements in recent years. This improvement has been fueled in part by the curation of large labeled training datasets with millions of images of hundreds of thousands of subjects.This results in effective generalization for matching over pose, illumination, expression and age variation, however these datasets have traditionally ...

    STTR Phase I 2018 Department of DefenseSpecial Operations Command
  9. System for Nighttime and Low-Light Face Recognition

    SBC: MUKH Technologies LLC            Topic: SOCOM18A001

    Recognizing faces in low-light and nighttime conditions is a challenging problem due to the noisy and poor quality nature of the images.Thermal imaging is often used to obtain facial biometric in such conditions. Thermal face images, while having a strong signature at nighttime, are not typically maintained in biometric-enabled watch lists and so must be compared with visible-light face images to ...

    STTR Phase I 2018 Department of DefenseSpecial Operations Command
  10. Human Performance Optimization: Ketone Esters for Optimization of Operator Performance in Hypoxia

    SBC: HVMN Inc.            Topic: SOCOM17C001

    In the setting of altitude-induced hypoxia, operator cognitive capacity degrades and can compromise both individual and team performance. This degradation is linked to falling brain energy (ATP) levels and an increased reliance on anaerobic energy production from glucose. Ketone bodies are the evolutionary alternative substrate to glucose for brain metabolic requirements; previous studies have sho ...

    STTR Phase I 2018 Department of DefenseSpecial Operations Command
US Flag An Official Website of the United States Government