You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Plasmon Induced Photoelectrochemistry for artificial photosynthesis

    SBC: Tanner Research, Inc.            Topic: AF09BT39

    The Air Force has a strategic need for a fuel source that is renewable (and which does not rely on foreign petroleum sources). Several approaches to a renewable fuel source have been investigated; with “artificial photosynthesis” being one example. At its core, the photosynthesis reaction is a photoinduced charge separation reaction with light being concentrated by antenna complexes onto a c ...

    STTR Phase I 2010 Department of DefenseAir Force
  2. Frequency agile THz detectors for multiplicative mixing

    SBC: Tanner Research, Inc.            Topic: AF08BT26

    ABSTRACT: A system that operates at room temperature and that could scan for concealed weapons from standoff distances of >10 m would be a tremendous asset for US military homeland security personnel worldwide. THz imaging can, potentially, be used for this application, but it requires the development of a new class of THz detectors whereby the signal to noise ratios are improved significantly. ...

    STTR Phase II 2010 Department of DefenseAir Force
  3. Advanced Real Time Battery Monitoring and Management System

    SBC: Technology Service Corporation            Topic: N10AT013

    TSC and Purdue University will demonstrate a lab prototype of software and hardware capable of doing high speed monitoring of a Lithium-Ion cell. This monitoring needs to be specifically designed to predict failures. When a predictive failure is indicated a defensive countermeasure needs to be implemented. Our specific project goals are to: 1) Select a Lithium-Ion battery that consists of multiple ...

    STTR Phase I 2010 Department of DefenseNavy
  4. Simulation Tool for Modeling Weakly Ionized Plasma

    SBC: TECH-X CORPORATION            Topic: AF09BT10

    We propose to develop a commercial weakly ionized plasma modeling capability based off of Tech-X’s high energy density plasma fluid code TxFluids. The new additions will be able to be used to model hypersonic vehicle physics including shock waves, plasma chemistry and innovative techniques for blackout mitigation and hypersonic vehicle control through the application of electric and/or magnetic ...

    STTR Phase I 2010 Department of DefenseAir Force
  5. Enhanced Riverine Drifter

    SBC: TOYON RESEARCH CORPORATION            Topic: N10AT024

    The Navy has need of assessing the river environment including bathymetry, flow velocity profile, and navigational obstructions. While improvements in measurement fidelity and reduction in cost have come about by the use of multiple drifters, measurement quality is lost due to convergent drifter trajectories, and cost/risk remains high due to personnel effort required for deployment. An autonomous ...

    STTR Phase I 2010 Department of DefenseNavy
  6. Innovative Application of Urban ISR (Intelligence, Surveillance, Reconnaissance) Imagery for High Fidelity Training Devices

    SBC: TOYON RESEARCH CORPORATION            Topic: N09BT038

    Toyon Research Corporation and Brown University propose to develop a complete real-time software solution which ingests multi-sensor ISR imagery and produces geo-specific, realistic simulated imagery for flight simulators and training devices. The technical innovations enabling this solution include fully automated 3-d model construction from sequences of ISR video frames, and geo-registration of ...

    STTR Phase I 2010 Department of DefenseNavy
  7. Development for Radiation Hardened Advanced Electronic Circuits

    SBC: United Silicon Carbide, Inc.            Topic: MDA09T006

    In response to SBIR topic MDA09-T006, USCI proposes to develop the first medium-level integrated circuit for radiation-tolerant applications. The advanced integrated circuit will be demonstrated based on a novel yet simple design SiC transistor that has the potential to provide a factor of 10X improvement in performance comparison to state-of-the-art. The SiC transistor can be fabricated by a subs ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  8. Rapidly Deployable Display with Continuous Self-Correction

    SBC: VSee Lab LLC            Topic: N07T003

    During the Phase I period, we have successfully developed and demonstrated all the major technical components to achieve the goal of providing seamless large scale display anywhere, anytime, for any content. Based on the solid foundation we have built from Phase I, we plan to improve and integrate various components to develop intelligent projectors that can be networked together to create a seaml ...

    STTR Phase II 2010 Department of DefenseNavy
  9. Ambient Noise Interferometry for Passive Characterization of Dynamic Environments

    SBC: ZEL TECHNOLOGIES, L.L.C.            Topic: N10AT004

    Non-invasive, stealthy nature of passive remote sensing combined with its low cost make passive techniques a promising supplement or replacement of traditional active remote sensing techniques. Coherent processing of diffuse wave fields has a proven potential for remote sensing of stationary environments. The proposed research extends noise interferometry to characterization of dynamic environment ...

    STTR Phase I 2010 Department of DefenseNavy
  10. Polarization switching VCSEL (P-VCSEL)

    SBC: ZIVA CORPORATION            Topic: ST092003

    Ziva Corporation in collaboration with UCSB will assess the feasibility of developing a directly modulated polarization switching laser based on the Vertical Cavity Surface Emitting Laser (VCSEL) geometry with a 3dB frequency of at least 10 GHz. This will be a major breakthrough in the ability to cost effectively fabricate directly modulated lasers (even in 2-D arrays) with polarization diversity ...

    STTR Phase I 2010 Department of DefenseDefense Advanced Research Projects Agency
US Flag An Official Website of the United States Government