You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Compressive Sensing in the Tactical Underwater Environment- MP 45-09- (MP 34-10)

    SBC: METRON INCORPORATED            Topic: N09T019

    The theory of compressive sensing (CS) will be extended to the design of arrays for underwater systems. The underlying theory is applicable to arbitrary sensor arrays, but the focus will be placed on synthetic aperture sonar (SAS). The proposed research will integrate CS with the closely related and evolving field of matrix completion. Concerning the latter, it is assumed that a matrix of noisy da ...

    STTR Phase II 2010 Department of DefenseNavy
  2. Efficient High-Power Tunable Terahertz Sources using Optical Techniques

    SBC: Microtech Instruments, Inc.            Topic: AF08T009

    The main objective of the proposed Phase II project is to leverage the technology of THz generation in resonantly-pumped quasi-phase-matched (QPM) GaAs structures, jointly developed by Stanford University and Microtech Instruments, Inc., and create a compact and power-efficient commercial THz source with a mW-level average power. This source will be continuously or step-tunable in the 0.5-3 THz ra ...

    STTR Phase II 2010 Department of DefenseAir Force
  3. Non-destructive Exfoliation and Drying of Anisotropic Nanomaterials

    SBC: NANOSONIC INC.            Topic: A09AT021

    The overall goal of this proposed Army STTR is to demonstrate low-cost, non-destructive methodologies for non-agglomerating drying of anisotropic nanomaterials. NanoSonic and Virginia Tech will work in tandem to demonstrate novel approaches involving both high performance coatings and CO2 processing that facilitate gentle, simultaneous drying and exfoliation of nanoparticles, preventing agglomera ...

    STTR Phase I 2010 Department of DefenseArmy
  4. High Temperature Metal RubberTM Sensors For Skin Friction Measurements

    SBC: NANOSONIC INC.            Topic: AF09BT32

    The Air Force Phase I STTR program would develop and demonstrate high temperature version of ‘sensor skins’ capable of multi-axis flow characterization on air breathing hypersonic engines. This would build upon NanoSonic’s successful demonstration of Metal Rubber™ transducer materials for the measurement of flow-induced skin friction and pressure at low temperatures and transonic and super ...

    STTR Phase I 2010 Department of DefenseAir Force
  5. MEMS based thermopile infrared detector array for chemical and biological sensing

    SBC: New Jersey Microsystems, Inc.            Topic: A10AT004

    New Jersey Microsystems proposes to develop an economical thermopile array with sensitivity maximum in the long wave infrared region (LWIR). Current infrared detectors are too expensive to be widely deployed in large numbers. The proposed MEMS technology is simpler, more manufacturable, and therefore less expensive than bolometer and ferroelectric devices with competitive D* sensitivity. The th ...

    STTR Phase I 2010 Department of DefenseArmy
  6. Fast Updatable Large-area Holographic Display

    SBC: NEW SPAN OPTO-TECHNOLOGY, INC.            Topic: AF08T001

    Two-dimensional (2D) visualization techniques have limit capacity to achieve understanding of full dimensionality of the battlefield. Rewritable 3D holographic storage is promising for updatable 3D display applications. In Phase I, New Span Opto-Technology has demonstrated novel concepts of both holographic recording technique and recording material system without the use of high voltage. We have ...

    STTR Phase II 2010 Department of DefenseAir Force
  7. Wideband Metamaterial Antennas Integrated into Composite Structures

    SBC: NEXTGEN AERONAUTICS, INC.            Topic: N10AT021

    A team led by NextGen Aeronautics Inc., and working with San Diego State University proposes the development of redundant wideband antennas that are embedded in composite armor structures The planned work builds upon the team’s extensive prior experience in conformal load-bearing antenna structures (CLAS), antenna design, and metamaterials. The proposed antenna is a combination of concepts that ...

    STTR Phase I 2010 Department of DefenseNavy
  8. High-rate Manufacturing of Structural-state Sensors (MOSS)

    SBC: NEXTGEN AERONAUTICS, INC.            Topic: N10AT031

    The goal of the proposed research is the development of a high-volume, low-cost manufacturing along with a novel deposition process that enables fabrication of a structural-state electronic system-on film. This hybrid electronic system contains a multifunctional sensor suite that can measure a structure's static (such as deformation, stress and strain) and dynamic state (such as slow or under acce ...

    STTR Phase I 2010 Department of DefenseNavy
  9. Robust, Real Time, Full Field Strain Monitoring Over Large Areas

    SBC: NEXTGEN AERONAUTICS, INC.            Topic: N09T010

    NextGen Aeronautics in collaboration with Virginia Tech plan to build on our Phase I work and propose to further develop our concepts and designs for a scalable, fast and easy to use optical strain measurement system. Our proposed Phase II effort will focus on the development of a dual level optical camera system which uses one set of cameras to measure strains over the entire test specimen and a ...

    STTR Phase II 2010 Department of DefenseNavy
  10. Efficient Propagators and Gravity Models in non-Cartesian Coordinate Systems

    SBC: NUMERICA CORPORATION            Topic: AF09BT02

    Accurate and timely surveillance of objects in the near-Earth space environment is becoming increasingly critical to US national security. One of the main difficulties in this domain is efficiently and accurately modeling trajectories of the vast number of objects in orbit around the Earth. The orbital trajectory of a single object is typically modeled as a second-order system of equations which ...

    STTR Phase I 2010 Department of DefenseAir Force
US Flag An Official Website of the United States Government