You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Meaning-Aligned Record Synthesis for Training Emerging Capabilities (MARSTEC)

    SBC: SOAR TECHNOLOGY INC            Topic: N18AT003

    Operational experts collect recorded data about emerging tactics, techniques, and procedures (TTPs) from sources such as live and virtual training exercises, and numerous test and evaluation simulations. However, instructional designers cannot easily reuse the recorded data to create new training. Without sufficient access to operational experts, expert knowledge is inaccessible and fragmented, of ...

    STTR Phase I 2018 Department of DefenseNavy
  2. Information-based Norms on Flow, Operations, and Traffic Over Networks (INFOTON)

    SBC: ISEA TEK, LLC            Topic: N18AT027

    The Internet of Things (IoT) connects people, data, and "things" (e.g., software, sensors, platforms), facilitating the translation of information into actions. Although naval platforms’ networks and communication suites have evolved significantly in the past few years to support such required connectivity, one of the greatest technical challenges still facing the military community is the proce ...

    STTR Phase I 2018 Department of DefenseNavy
  3. Low-cost production of ultra-low defect GaN-based power electronics

    SBC: QRONA TECHNOLOGIES LLC            Topic: N18AT004

    GaN power semiconductors offer a technological breakthrough for improving the performance of power electronics including power density, conversion efficiency, and reliability of power converters. These are the three most critical requirements for military, aerospace and many commercial applications. In this STTR program, Qrona Technologies will collaborate with the University of Central Florida to ...

    STTR Phase I 2018 Department of DefenseNavy
  4. Hot Filament CVD technology for disruptive, high-throughput SiC epitaxial growth reactors

    SBC: TRUENANO INC            Topic: N18AT004

    TrueNano, Inc. will in collaboration with the University of Colorado and industry partners, develop a novel single-wafer, high-throughput hot filament CDV reactor for the growth of high quality silicon carbide (SiC) epitaxial layers, suitable for the next generation of power electronic devices and systems. This includes the design and simulation of the reactor, the development of a throughput mode ...

    STTR Phase I 2018 Department of DefenseNavy
  5. Advanced Ship-handling Simulators

    SBC: D'Angelo Technologies, LLC            Topic: N18AT014

    There is a need to create an automated, adaptive, real time coaching module that can integrate the Conning Officer Virtual Environment (COVE) along with the associated Intelligent Tutor System (COVE-ITS) and the Conning-Officer Ship Handling Assessment (COSA) together. By automating the evaluation process, Surface Warfare Officers (SWOs) will have the opportunity to use the COVE simulations more f ...

    STTR Phase I 2018 Department of DefenseNavy
  6. Innovative additive manufacturing (AM) process for successful production of 7000 series aluminum alloy components using Smart Optical Monitoring Syste

    SBC: SENSIGMA LLC            Topic: N18AT005

    Naval aircraft components are routinely made of 7000 series aluminum alloys due to their strength, weight and fatigue properties. Present Additive Manufacturing (AM) processes falls short of producing 7000 series Al alloys successfully due to lack of porosity, thermal and composition control. In-situ methods implemented to date largely only yield information about the component surface and other m ...

    STTR Phase I 2018 Department of DefenseNavy
  7. Carbon Nanotube-Based Heater Coatings for Processing of Thermosetting and Thermoplastic Composites

    SBC: MAINSTREAM ENGINEERING CORP            Topic: N18BT031

    For this research program, Mainstream will collaborate with Colorado State University (CSU) to develop a nanostructured heater capable of curing aerospace grade composites out-of-autoclave (OOA). The use of autoclaves is the primary cost driver in composite manufacturing due to size limitations, long processing times, and inefficient energy usage. Therefore, the Navy is looking to develop a nanost ...

    STTR Phase I 2019 Department of DefenseNavy
  8. Compact Thermal Management System for Laser Systems

    SBC: SPECTRAL ENERGIES LLC            Topic: N18AT001

    The use of laser technologies and high-power electronics is rapidly being incorporated into tactical platforms for imaging, target designation, and range finding. Electronic equipment including lasers demand power from a tactical aircraft and produce large amounts of thermal energy as a waste product. Current thermal management technologies will not be sufficient for future aircraft as thermal man ...

    STTR Phase I 2018 Department of DefenseNavy
  9. Out-of-Oven Aerospace Composites

    SBC: CORNERSTONE RESEARCH GROUP INC            Topic: N18BT031

    Large aerospace composite structures currently require autoclaves and ovens to achieve desired performance which are expensive to purchase, costly to operate, and often limit part size and production rate. Ovens and autoclaves rely on convective heating which is inefficient, consumes large amounts of energy, and can be difficult to predict. Alternative cure processes using external heaters or hot ...

    STTR Phase I 2019 Department of DefenseNavy
  10. Power and Propulsion System Optimization

    SBC: CORNERSTONE RESEARCH GROUP INC            Topic: N18AT012

    Unmanned underwater vehicles (UUVs) are currently limited in the type of missions they can perform. Limited available power limits which sensors can be run or for how long, and also limits the duration and range of the mission. More efficient propulsion systems would increase the power available to the UUV payload. Improved power distribution systems and control systems would also increase the ava ...

    STTR Phase I 2018 Department of DefenseNavy
US Flag An Official Website of the United States Government