You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Automated Approaches to Cellular Engineering and Biomanufacturing

    SBC: Covitect Inc.            Topic: ST12B003

    Genome-scale predictable cellular design and engineering of biomanufacturing systems is the overarching a goal of DARPA's Living Foundry thrust and, if realized, will enable rapid engineering of living biosystems for a broad range of applications in biotechnology and pharmacology. However, constructing living cells with designed genome is not fully automated and is severely limited by inhere ...

    STTR Phase I 2013 Department of DefenseDefense Advanced Research Projects Agency
  2. Maneuver Prediction and Avoidance Logic For Unmanned Aircraft System Encounters with Non-Cooperative Air Traffic

    SBC: NUMERICA CORPORATION            Topic: N13AT003

    For Unmanned Aircraft Systems (UAS) to operate seamlessly in both the U.S. National Airspace System (NAS) and abroad, it will be crucial that they possess a sense-and-avoid (SAA) capability that can ensure safe operations among maneuvering, non-cooperative aircraft. Numerica Corporation, in partnership with Johns Hopkins University, proposes to develop a set of algorithms to model the uncertaintie ...

    STTR Phase I 2013 Department of DefenseNavy
  3. Low-Cost High Power Surface Emitting Micro-Stripe Quantum Cascade Laser Arrays

    SBC: EOS Photonics            Topic: N13AT006

    We envision a coherently coupled QCL array architecture featuring 2nd order DFB gratings to vertically couple out light with excellent beam quality and high output power. This approach does not require cleaving of the devices or facet coatings and is therefore inherently more robust and manufacturable than facet emitters.

    STTR Phase I 2013 Department of DefenseNavy
  4. Multi-scale modeling of corrosion fatigue damage using peridynamics theory

    SBC: CFD RESEARCH CORPORATION            Topic: N13AT007

    The overall objective of this effort is to identify, and validate a suitable methodology and the associated multi-scale computational technique for predictive assessment of corrosion fatigue damage in Naval aircraft. Annual costs for corrosion inspection and repair of military aircraft are estimated to exceed $1B. Predictive modeling of corrosion fatigue damage is challenging since it has to captu ...

    STTR Phase I 2013 Department of DefenseNavy
  5. Parametric Analysis of Various Test Configurations for Measuring the Interlaminar Fracture Toughness of CMCs using LayerSlayer and Abaqus

    SBC: AURORA FLIGHT SCIENCES CORPORATION            Topic: N13AT008

    The low weight, excellent durability and heat resistance of ceramic matrix composites (CMCs) make them attractive materials for use in aircraft engine hot sections, where improved overall engine efficiency can be realized. Nevertheless, the interlaminar properties of CMCs must be well understood before CMCs can realistically replace metallic superalloys in engine hot sections, and no standardized ...

    STTR Phase I 2013 Department of DefenseNavy
  6. Efficient Rare Earth Separation Technology

    SBC: REACTIVE INNOVATIONS, LLC            Topic: OSD12T02

    In this Phase I SBIR proposal, Reactive Innovations, LLC will demonstrate the technical and economic viability of a room temperature environmentally friendly technology for extraction and separation of light rare earth metals (lanthanides) with improved efficiency. Rare earths currently require multiple separation steps to yield high purity material. Decreasing the number of separation processes ...

    STTR Phase I 2013 Department of DefenseNavy
  7. Novel Electrolytic Extraction Processes for Scarce Elements

    SBC: INFINIUM, INC.            Topic: OSD12T03

    Metal Oxygen Separation Technologies, Inc. proposes a 6-month SBIR Phase I project to demonstrate feasibility of using molten salt electrolysis with a zirconia solid electrolyte to cleanly and efficiently produce dysprosium metal from its oxide. This Phase I project will have as its goal the design of a molten salt-zirconia-anode system in the context of an electrolysis cell for producing high-pu ...

    STTR Phase I 2013 Department of DefenseNavy
  8. Intelligence and Intuition for Enhanced Decision Making (I2EDM)

    SBC: MODUS OPERANDI, INC.            Topic: N13AT024

    The focus of our Intelligence and Intuition for Enhanced Decision Making (I2EDM) Phase 1 research is to provide efficient and timely automated production and dissemination of information products in support of doctrinal Decision Points for the Company and below in austere environments. Operating in the Cloud, I2EDM will continuously fuse tactical information with human intuition and experience to ...

    STTR Phase I 2013 Department of DefenseNavy
  9. Coupled Cluster Methods for Multi-Reference Applications

    SBC: ACES QC, LC            Topic: AF09BT40

    The objective of Phase I is to identify the strengths and weaknesses of the various multi-reference coupled-cluster (MRCC) methods that have been proposed for the description of molecular states depending upon near degeneracies and non-dynamic electron correlation. Such effects are encountered in bond breaking, at transition states, for complex open shell systems like transition metal atoms, and f ...

    STTR Phase I 2010 Department of DefenseAir Force
  10. Thermoelectric material-coated carbon nanotubes as high conductivity thermal interface materials

    SBC: ADA TECHNOLOGIES, INC.            Topic: AF09BT22

    The ever-decreasing size of the electronic microchips and the ever-increasing density of electronic components required to support future Air Force platforms are creating the problem of substantial localized heat generation that can impair component operation. State of the art thermal interface materials (TIMs), that are used to dissipate heat from the source to the spreader in a microchip, are se ...

    STTR Phase I 2010 Department of DefenseAir Force
US Flag An Official Website of the United States Government