You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Self-Healing Non-Catalytic Multifunctional Composite Structure

    SBC: TEXAS HIGH ENERGY MATERIALS, LLC            Topic: N10AT007

    Areas of research relating to self-healing composites structures have been undertaken by well-known and respected institutions under the auspices of the Department of Defense. Patent literature and public technical communiqué describe their novel engineering approaches using microencapsulated systems that release polymeric healing agents through suitable mechanisms. While these approaches have me ...

    STTR Phase I 2010 Department of DefenseNavy
  2. A Multiscale Modeling and Simulation Framework for Predicting After-Burning Effects from Non-Ideal Explosives

    SBC: REACTION ENGINEERING INTERNATIONAL            Topic: N10AT002

    The primary objective of the proposed effort is to develop a validated computational tool to predict the afterburning of non-ideal munitions containing metal and hydrocarbon fuels. The activities outlined devise a well-coordinated collaboration among researchers from Reaction Engineering International (REI) and the State University of New York at Buffalo (UB). The activities proposed will build on ...

    STTR Phase I 2010 Department of DefenseNavy
  3. High Energy Density Hydrogen Delivery System

    SBC: GINER INC            Topic: N10AT030

    This NAVY Small Business Technology Transfer project is directed toward the development of a novel hydrogen generator that employs nanostructured metal foam catalysts. Special coating and form factor will also be employed to the hydrogen generating materials to ensure the safety of storage and transportation, while maintaining very high packing density compared with conventional powder packing.

    STTR Phase I 2010 Department of DefenseNavy
  4. Novel management of transducer heat and nonlinearity

    SBC: FERRO SOLUTIONS, INC.            Topic: N08T020

    Ferro Solutions has demonstrated in Phase I that ferro fluids can be used to create a self-pumping cooling system that can extend the life and improve performance of highpower transducers or other electro-mechanical devices. In the Phase I demonstration a resistor submerged in a ferrofluid was powered so that its temperature increased to over 1200C. Upon introduction of the appropriate magnetic fi ...

    STTR Phase II 2010 Department of DefenseNavy
  5. Innovative Concepts for Non-Thermal Based Anti-Icing/De-Icing of Rotor Blade Leading Edges

    SBC: Infoscitex Corporation            Topic: N08T013

    Icing is among aviation’s most serious weather hazards because it renders aircraft unflyable before flight and severely reduces aircraft performance during flight. Existing approaches for mitigating ice accretion on leading edges, such as the inflatable boot and liquid deicer can significantly increase weight, power requirements and manufacturing complexity without providing sufficient reliabili ...

    STTR Phase II 2010 Department of DefenseNavy
  6. Development of Improved High Strength, High Conductivity Refractory Materials for Rail Gun Launchers

    SBC: ADVANCED POWDER SOLUTIONS INC            Topic: N10AT025

    APS has assembled a world class team to address problems associated with rail gun launcher operation. APS has combined its unique processing experience with IAT's railgun design, testing and characterization experience to develop materials to improve rail gun performance. Phase I will be devoted to fabrication and testing of various samples in rail gun conditions. Phase II will focus on the manufa ...

    STTR Phase I 2010 Department of DefenseNavy
  7. High-Speed Method to Produce Flexible Pressure Sensors

    SBC: APPLIED NANOTECH, INC.            Topic: N10AT031

    The promise of printed electronics can not be realized without high-speed manufacturing processes to drive the cost down for wide spread distribution. This proposal will outline the key points for rapid manufacturing of new electronic devices and systems and make recommendations for making them a reality. There are two main focus areas that encompass all the limitations to printed integrated circu ...

    STTR Phase I 2010 Department of DefenseNavy
  8. Photo Triggered Carbon Nanotube Field Emission Cathode for Free Electron Lasers

    SBC: BUSEK CO., INC.            Topic: N10AT023

    Busek Co. Inc (Busek) and Massachusetts Institute of Technology (MIT) propose to develop the design of a photon actuated, ultrafast carbon nanotube (CNT) field emission cathodes for high-power electron beam accelerator sources. The cathode will be based on massive arrays of Vertically Aligned Carbon Nano-Fibers (VA-CNFs) that are individually controlled by a vertical ungated field effect transisto ...

    STTR Phase I 2010 Department of DefenseNavy
  9. Enhanced Riverine Drifter

    SBC: C-2 INNOVATIONS INC.            Topic: N10AT024

    The proposed Autonmous Reactive Ferrrying Drifter (ARF-D) provides wide measured swath, autonomously maintains a buffer distance from close-shore snags, and by utilizing river flow provides a very low power approach to obtaining cross-river surveying, providing greater coverage with minimal power penalty. By randomizing the cross-river transit paths multiple ARF-D units will naturally overcome the ...

    STTR Phase I 2010 Department of DefenseNavy
  10. FreeSwim: Autonomous Behaviors for Undersea Sensors

    SBC: CHARLES RIVER ANALYTICS, INC.            Topic: N10AT038

    Future naval operations are expected to make extensive use of unmanned vehicles to support a range of operations, including intelligence gathering, mine warfare, force protection, and anti-submarine warfare. Current unmanned systems are typically controlled remotely by an operator who directly manipulates a control interface for the vehicle. The effectiveness of this approach is obviously limited ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government