You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Innovative Material Handling System for the Expeditionary Mobile Base (ESB) Class Ship

    SBC: ADVANCED TECHNOLOGY AND RESEARCH CORPORATION            Topic: N17AT012

    ATR proposes the development of an innovative Advanced Dual-Purpose Elevator System (ADPES) that can be installed on an Expeditionary Base Mobile (ESB) so that aircraft and cargo can be transferred from the flight deck to the mission bay and watercraft like the Combatant Craft Medium (CCM) can be launched and recovered from mission bay to the sea. The ADPES consists of a submersible platform and t ...

    STTR Phase II 2019 Department of DefenseNavy
  2. TACTIC-D II: Techniques to Adjust Computational Trends Involving Changing Data

    SBC: APTIMA INC            Topic: N17BT032

    The US Navy recognizes the potential for “big data” to facilitate force readiness. However, the analysis of such data presents numerous challenges, among them, (1) the evolving nature of Navy tactics, hindering apples-to-apples comparisons; (2) the presence of many interdependent platforms, making data complex; and (3) presenting analyses to humans, making understandability important. Aptima ...

    STTR Phase II 2019 Department of DefenseNavy
  3. MEDUSAE: Tactically Relevant Jellyfish-Inspired Profiling Floats PH II

    SBC: BOSTON ENGINEERING CORPORATION            Topic: N18AT025

    With MEDUSAE, our world class team proposes to leverage our extensive experience, existing technology, and a unique approach to lightweight, long lasting, self-recharging jellyfish-inspired floats to fill an oceanographic sensing capability gap for the Navy. Our experience in bio-inspired robot (including jellyfish), nonconventional actuation, and energy harvesting development promises to provide ...

    STTR Phase II 2019 Department of DefenseNavy
  4. Information-based Norms on Flow, Operations and Traffic Over Networks (INFOTON)

    SBC: ISEA TEK, LLC            Topic: N18AT027

    The Internet of Things (IoT) connects people, data, and "things" (e.g., software, sensors, platforms), facilitating the translation of information into actions. Although naval platforms’ networks and communication suites have evolved significantly in the past few years to support such required connectivity, one of the greatest technical challenges still facing the military community is the proce ...

    STTR Phase II 2019 Department of DefenseNavy
  5. Catastrophic Optical Damage Mitigation in Quantum Cascade Lasers by Facet Disordering

    SBC: N2 Biomedical, LLC            Topic: N19AT004

    Quantum cascade laser optical output power is limited by laser facet catastrophic optical damage (COD). In edge-emitting semiconductor lasers COD is a thermal runaway process wherein the front facet of the laser heats under high power operation. This facet heating reduces the semiconductor bandgap which increases the optical absorption and also increases the electrical injection current in the fac ...

    STTR Phase I 2019 Department of DefenseNavy
  6. Process to Mitigate Catastrophic Optical Damage to Quantum Cascade Lasers

    SBC: PENDAR TECHNOLOGIES LLC            Topic: N19AT004

    In this program, we will develop solutions to optimize QCL fabrication processes, such as facet passivation and high thermal conductivity coatings, that will mitigate the reliability issues for high power QCL applications. In phase I, we will first evaluate all concepts and efforts that have been largely investigated for GaAs based high power diode lasers and transfer the knowledge to InP based QC ...

    STTR Phase I 2019 Department of DefenseNavy
  7. Process to Mitigate Catastrophic Optical Damage to Quantum Cascade Lasers

    SBC: IRGLARE LLC            Topic: N19AT004

    The development of a catastrophic optical damage model for quantum cascade lasers describing instantaneous laser damage at high optical power levels is proposed. The model will be validated by comparison to experimental data. Based on obtained results, changes to laser design and laser fabrication resulting in an increased damage threshold will be implemented. The work will ultimately result into ...

    STTR Phase I 2019 Department of DefenseNavy
  8. Hybrid Ceramic Matrix Composite/Polymer Matrix Composite (CMC-PMC) Skin Materials

    SBC: TRITON SYSTEMS, INC.            Topic: N18AT024

    Triton Systems, Inc. proposes to develop an affordable, lightweight and durable hybrid composite system for next generation structural frame composites that will survive both short- and long-term thermal and chemical exposure and abrasive conditions. The team will develop a hybrid materials system that is an improvement on traditional carbon fiber reinforced polymer (CFRP) systems in performance a ...

    STTR Phase II 2019 Department of DefenseNavy
  9. High Throughput Testing of Additive Manufacturing

    SBC: MRL MATERIALS RESOURCES LLC            Topic: N18AT028

    Additive manufacturing is a disruptive new manufacturing paradigm that hold tremendous potential for creation of novel designs and introduction of novel new alloy systems. However, much of this potential remains unrealized due to a lack of robust material properties databases. Accurate calibration of materials models and robust part qualification and certification regimes both will require massive ...

    STTR Phase II 2019 Department of DefenseNavy
  10. Power-Dense Electrical Rotating Machines for Propulsion and Power Generation

    SBC: CONTINUOUS SOLUTIONS LLC            Topic: N19AT007

    The primary objective is to develop electric machine/drive topologies and power architectures that achieve the power densities required for 50% more power without the increase in weight or space requirements. In addition to PMSM-based designs, two new machine topologies will be considered. The first is a trapped flux coreless (TFC) machine that utilizes superconducting pucks made of YBCO to produc ...

    STTR Phase I 2019 Department of DefenseNavy
US Flag An Official Website of the United States Government