You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Efficient Multi-Scale Radiation Transport Modeling

    SBC: HYPERCOMP INC            Topic: AF08T020

    Radiative heat transfer is a dominant mode of heat transfer in combustion and propulsion systems as well as for hypersonic flow encountered during planetary entry. Solution of the Radiative Transfer Equation (RTE), which is an integro-differential equation, places stringent requirements on the computational resources as: (a) the radiation depends both on spatial and angular dimensions, (b) radiati ...

    STTR Phase II 2010 Department of DefenseAir Force
  2. High-order modeling of applied multi-physics phenomena

    SBC: HYPERCOMP INC            Topic: AF08T023

    The gap between research in numerical methods and popular commercial solvers in CFD and related areas has been gradually widening in the recent past, particularly in the realm of high order accurate algorithms. At HyPerComp we are advancing a suite of high order codes based on the discontinuous Galerkin (DG) technique that can be used in electromagnetics, fluid mechanics, MHD and radiative heat tr ...

    STTR Phase II 2010 Department of DefenseAir Force
  3. Advanced Computational Methods for Study of Electromagnetic Compatibility

    SBC: HYPERCOMP INC            Topic: AF09BT13

    The leakage of electromagnetic (EM) energy into air vehicles, and particularly into ordnance, poses a hazard that requires careful evaluation. Under current guidelines, such evaluations are primarily to be carried out through extensive testing of items under possible field conditions, a process that can be both time-consuming and costly. The scope of this STTR Phase I activity is to implement a h ...

    STTR Phase I 2010 Department of DefenseAir Force
  4. Intelligent In-Situ Feature Detection, Extraction, Tracking and Visualization For Turbulent Flow Simulations

    SBC: JMSI, INC            Topic: AF08T017

    The Phase II STTR project proposed herein presents a new methodology that Detect, Ex-tract, Track and Display features in a CFD solution. BENEFIT: It is projected that his work will impact the Air Force’s procurement methods through improved analysis capabilities in: 1. Aerostructures analysis 2. Weapons bay and structural acoustics analysis 4. Active flow control analysis 5. High lift syste ...

    STTR Phase II 2010 Department of DefenseAir Force
  5. Fast Updatable Large-area Holographic Display

    SBC: NEW SPAN OPTO-TECHNOLOGY, INC.            Topic: AF08T001

    Two-dimensional (2D) visualization techniques have limit capacity to achieve understanding of full dimensionality of the battlefield. Rewritable 3D holographic storage is promising for updatable 3D display applications. In Phase I, New Span Opto-Technology has demonstrated novel concepts of both holographic recording technique and recording material system without the use of high voltage. We have ...

    STTR Phase II 2010 Department of DefenseAir Force
  6. Fast Updatable Large-area Holographic Display

    SBC: NEW SPAN OPTO-TECHNOLOGY, INC.            Topic: AF08T001

    Two-dimensional (2D) visualization techniques have limit capacity to achieve understanding of full dimensionality of the battlefield. Rewritable 3D holographic storage is promising for updatable 3D display applications. In Phase I, New Span Opto-Technology has demonstrated novel concepts of both holographic recording technique and recording material system without the use of high voltage. We have ...

    STTR Phase II 2010 Department of DefenseAir Force
  7. Efficient High-Power Tunable Terahertz Sources using Optical Techniques

    SBC: Microtech Instruments, Inc.            Topic: AF08T009

    The main objective of the proposed Phase II project is to leverage the technology of THz generation in resonantly-pumped quasi-phase-matched (QPM) GaAs structures, jointly developed by Stanford University and Microtech Instruments, Inc., and create a compact and power-efficient commercial THz source with a mW-level average power. This source will be continuously or step-tunable in the 0.5-3 THz ra ...

    STTR Phase II 2010 Department of DefenseAir Force
  8. Orthogonal Chip Based Electronic Sensors for Chemical Agents

    SBC: SEACOAST SCIENCE, INC.            Topic: AF08T015

    Recent years have seen a shift in threats to US national security. Today increasing focus for national security is management of terrorist activities. Deliberately exposing a civilian population to chemicals and explosives to cause harm represents a looming terrorist threat. Early detection and identification is a difficult but essential element to minimizing the threat. The Seacoast Science/U ...

    STTR Phase II 2010 Department of DefenseAir Force
  9. DEVELOPMENT OF MICROPLASMA ARRAYS FOR HIGH EFFICIENCY LIGHTING TILES

    SBC: EDEN PARK ILLUMINATION, INC.            Topic: AF08T012

    ABSTRACT: EDEN PARK ILLUMINATION, INC. and the University of Illinois have formed a team to pursue the demonstration and commercialization of large arrays of microcavity plasmas capable of producing white light panels with luminous efficacies above 30 lumens/W. This proposed project will demonstrate the ability of arrays of microplasmas to yield flat lamps of high efficiency, luminance, and col ...

    STTR Phase II 2010 Department of DefenseAir Force
  10. DEVELOPMENT OF MICROPLASMA ARRAYS FOR HIGH EFFICIENCY LIGHTING TILES

    SBC: EDEN PARK ILLUMINATION, INC.            Topic: AF08T012

    ABSTRACT: EDEN PARK ILLUMINATION, INC. and the University of Illinois have formed a team to pursue the demonstration and commercialization of large arrays of microcavity plasmas capable of producing white light panels with luminous efficacies above 30 lumens/W. This proposed project will demonstrate the ability of arrays of microplasmas to yield flat lamps of high efficiency, luminance, and col ...

    STTR Phase II 2010 Department of DefenseAir Force
US Flag An Official Website of the United States Government