You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. On Demand Energy Activated Liquid Decontaminants and Cleaning Solutions

    SBC: TDA RESEARCH, INC.            Topic: A12aT005

    Decontamination of chemical and biological threats demands a very reactive solution. It is ideal to generate the decontaminants on-site: the activated decontaminant is highly reactive and quickly destroys chemical and biological warfare agents; prior to activation the ingredients can be safely stored for years, shipped, and handled. TDA's electrochemical decontamination (eClO2) technology u ...

    STTR Phase II 2013 Department of DefenseArmy
  2. Monolithic Scalable Mid-Infrared Phase-Locked Laser Array

    SBC: INTRABAND, LLC            Topic: N11AT011

    The technical objectives of this proposal are: 1) Design a metal/semiconductor grating-based (i.e., substrate-emitting) Grating-Coupled Surface-Emitting Distributed Feedback Quantum Cascade Laser (GCSE-DFB QCL) emitting at 4.6 microns with high beam quality; and 2) Demonstrate a GCSE-DFB QCL emitting at 4.6 microns with single-lobe-beam operation and high beam quality, under CW operation. It is th ...

    STTR Phase II 2013 Department of DefenseNavy
  3. Novel Temperature and Vibration Tolerant Packaging for Inertial Sensors (MEMS)

    SBC: EPACK, INC.            Topic: N12AT008

    The objective of this proposal is to demonstrate a generic package that provides high vacuum, temperature control and vibration isolation for a wide range of high performance (tactical and navigation grade) micromachined inertial sensors. Inertial sensors (accelerometers and gyroscopes) are now widely used in consumer and industrial applications. However, for high performance navigation and target ...

    STTR Phase II 2013 Department of DefenseNavy
  4. Roll-to-Roll Printing of Patterned Nanomembranes on Flexible Substrates

    SBC: SysteMECH, Inc            Topic: OSD10T005

    Flexible electronic and optical devices, including sensors/detectors, waveguides, and photonic crystal structures, have significant promise for improving communication and information processing capabilities in a number of military and commercial applications. However, the development of such flexible devices has been hindered by the lack of effective manufacturing processes for producing these de ...

    STTR Phase II 2013 Department of DefenseAir Force
  5. Operating System Mechanisms for Many-Core Systems

    SBC: SECURBORATION, INC.            Topic: OSD11T04

    In the Phase I portion of this STTR, Securboration and renowned multicore expert Dr. Frank Mueller from North Carolina State University designed, developed, and benchmarked the proof-of-concept Pico-kernel Adaptive and Scalable Operating-system (PICASO) for many-core architectures. The Securboration Team took a scientific, experimentation-based approach to identifying and resolving shortcomings wi ...

    STTR Phase II 2013 Department of DefenseAir Force
  6. Design and Analysis of Multi-core Software

    SBC: SECURBORATION, INC.            Topic: OSD11T03

    Modern processor design is trending increasingly toward multicore architectures. This is problematic for programmers because writing a correct parallel program is known to be difficult compared to writing the equivalent sequential program. Additionally, a wide body of sequential code has already been developed that cannot exploit the power offered by these new cores because it was written in a s ...

    STTR Phase II 2013 Department of DefenseAir Force
  7. Autonomic Performance Assurance for Multi-Processor Supervisory Control

    SBC: COLORADO ENGINEERING INC.            Topic: OSD11T01

    Multi-processor computing systems are growing in capacity and usage. They encompass multiple, distributed implementations as well as heterogeneous, embedded computing architectures. The processing density enabled by such approaches holds promise for unmanned combat air vehicles (UCAVs) with their plethora of mission sensors and command and control processing requirements. However, the software ...

    STTR Phase II 2013 Department of DefenseAir Force
  8. Sensor Application Notation for ExaScale (SANE)

    SBC: Reservoir Labs, Inc.            Topic: OSD11T02

    In Phase II, based on the Phase I success, we propose to research further enabling optimizations for a wider range of sensor applications than in Phase I. We will also implement the key optimizations to SAR found in Phase I within the SANE high-productivity array language and automatic parallelization tool chain. These optimizations have a wide application domain within sensor applications and bey ...

    STTR Phase II 2013 Department of DefenseAir Force
  9. Cost Effective Solar Array based on High Efficiency Thin-Film Technology

    SBC: COMPOSITE TECHNOLOGY DEVELOPMENT, INC.            Topic: AF13AT06

    ABSTRACT: This Phase I effort will involve the development of an ultra low cost, high specific power, modular and flexible solar array module using currently available thin-film solar cells, innovative interconnects, and flexible encapsulation. The high efficiency thin-film solar cells will enable high specific power and flexibility in the module. The interconnect scheme and encapsulation will a ...

    STTR Phase I 2014 Department of DefenseAir Force
  10. Integral Fuel Tank Self-sealing Protection

    SBC: MATERIALS ENGINEERING AND TECHNICAL SUPPORT SERVICES CORP.            Topic: N12AT001

    The opportunity presented under this program is to develop a next-generation, self-sealing technology that can impart self-sealing capability to the most vulnerable areas of integral aircraft fuel tanks. Targeted application of the self-sealing materials will reduce the weight and fuel-volume penalty associated with conventional fuel bladder constructions. Under the Phase I program, the technical ...

    STTR Phase II 2014 Department of DefenseNavy
US Flag An Official Website of the United States Government