You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Miniature Electronic DFI for 5-20 Hp HFE

    SBC: JM HARWOOD, LLC            Topic: N10AT033

    JM Harwood, LLC, and UAH Propulsion Research Center propose the development of an electronic miniature Direct Fuel Injection (DFI) system for 5-20 hp heavy fuel engines. This highly integrated Very Small Injection Technology (V-SInTech) DFI system will be capable of (a) multiple injections per cycle, (b) variable injection timing, (c) variable spray penetration depth, (d) real-time closed loop mod ...

    STTR Phase I 2010 Department of DefenseNavy
  2. An Integrated Physics-Based Framework for Detecting Precursor to Damage in Naval Structures

    SBC: Los Gatos Research            Topic: N10AT042

    Aging aircraft commonly suffers from several types of degradation including fatigue cracking and lack of bonding. It is virtually impossible to predict degradation in structural performance or when a component or structure will fail due to the inability to test new material systems under all loading conditions and under all environmental conditions. A material state awareness system using minimali ...

    STTR Phase I 2010 Department of DefenseNavy
  3. A Fast-Response, Electronically Controlled Fuel Injection System for Small Heavy Fuel Engines with Multi-Fuel Capabilities

    SBC: MAINSTREAM ENGINEERING CORP            Topic: N10AT033

    Advances in electronically controlled injection technologies for diesel engines have provided a method to improve medium- to heavy-duty engine performance through increased injection pressures, multiple injections, and injection rate shaping. Although these injection systems have been primarily limited to larger engines, the ability to rapidly and precisely meter fuel for smaller engines is partic ...

    STTR Phase I 2010 Department of DefenseNavy
  4. Probing Dense Sprays with Gated, Picosecond, Digital Particle Field Holography

    SBC: METROLASER, INCORPORATED            Topic: N10AT027

    This is a proposal to develop a unique, robust, fieldable, gated, picosecond, digital holography system for characterizing dense particle fields under harsh conditions. Many powerful imaging methods have failed to fulfill this requirement because noise from multiple scattering buries the signal needed to acquire a useful image. Solutions to this limitation are very expensive, hard to implement, an ...

    STTR Phase I 2010 Department of DefenseNavy
  5. Wideband Metamaterial Antennas Integrated into Composite Structures

    SBC: NEXTGEN AERONAUTICS, INC.            Topic: N10AT021

    A team led by NextGen Aeronautics Inc., and working with San Diego State University proposes the development of redundant wideband antennas that are embedded in composite armor structures The planned work builds upon the team’s extensive prior experience in conformal load-bearing antenna structures (CLAS), antenna design, and metamaterials. The proposed antenna is a combination of concepts that ...

    STTR Phase I 2010 Department of DefenseNavy
  6. High-rate Manufacturing of Structural-state Sensors (MOSS)

    SBC: NEXTGEN AERONAUTICS, INC.            Topic: N10AT031

    The goal of the proposed research is the development of a high-volume, low-cost manufacturing along with a novel deposition process that enables fabrication of a structural-state electronic system-on film. This hybrid electronic system contains a multifunctional sensor suite that can measure a structure's static (such as deformation, stress and strain) and dynamic state (such as slow or under acce ...

    STTR Phase I 2010 Department of DefenseNavy
  7. External Pipe Sound Pressure Level Sensor

    SBC: PROGENY SYSTEMS, LLC            Topic: N10AT016

    Stealth is a primary consideration in design and operation of ships and submarines in the Navy fleet. Noise in hydraulic systems and piping is one source of unwanted noise. A method to measure and monitor this noise is essential to controlling and eliminating these noise sources. With the assistance of UMASS Dartmouth we will present a method to externally measure the fluidborne sound pressure lev ...

    STTR Phase I 2010 Department of DefenseNavy
  8. Refractory Metal Coating for Electromagnetic Launcher Rails

    SBC: TDA RESEARCH, INC.            Topic: N10AT025

    Electromagnetic launchers or rail guns are a key component of the Navy’s all-electric ship of the future, but they lack the durability required for repeated firings. TDA Research and the University of Nevada, Reno (UNR) are developing a tough, durable and conductive refractory metal coating that will protect the copper alloy conductors (rails) from the extreme heat and wear conditions inside the ...

    STTR Phase I 2010 Department of DefenseNavy
  9. MgB2-Coated RF Cavities for Free Electron Laser

    SBC: SUPERCONDUCTOR TECHNOLOGIES, INC.            Topic: N10AT023

    Free electron lasers (FEL) made from Nb cavities offer high performance, but they are complex, bulky, and expensive. For Navy FEL applications, where footprint, power consumption, and cost are severely constrained and reliability is of great importance there is a critical need for an alternative to Nb. MgB2 is a recently discovered superconductor with a high critical temperature and critical field ...

    STTR Phase I 2010 Department of DefenseNavy
  10. Probabilistic Prediction of Location-Specific Microstructure in Turbine Disks

    SBC: SYMPLECTIC ENGINEERING CORP            Topic: N10AT028

    Turbine efficiency improves with increased operating temperature. Consequently, the rim zone of disks operates at high temperatures where creep is the main concern. The bore and web zones operate at lower temperatures, where strength is the driving design criterion. Procedures to produce disks that can meet both demands include dual heat-treatment and hybrid disks. A thin transition zone forms in ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government