You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Adaptive Turbine Engine Control for Stall Threat Identification and Avoidance

    SBC: AURORA FLIGHT SCIENCES CORPORATION            Topic: N10AT008

    Aurora Flight Sciences and MIT propose to develop a model-based adaptive health estimation and real-time proactive control to identify gas turbine engine stability risks and avoid them through control action. In this concept, the engine control system actively monitors sensors and actuators, compares them against physical models, and infers which components may be performing poorly and may need to ...

    STTR Phase I 2010 Department of DefenseNavy
  2. Development of Surface Reaction Mechanism for C-SiC-SiO2-Rubber Composite Oxidation in Extreme Oxidizing Condition

    SBC: CFD RESEARCH CORPORATION            Topic: N10AT005

    The purpose of this STTR is to develop comprehensive detailed kinetics for oxidation of C-SiC-SiO2-rubber in extreme oxidizing environment. This material is used as a coating on the outer surface of Navy weapon systems. In order to predict the fate of this material under extreme conditions and mitigate the degradation of the coating, a comprehensive oxidation mechanism is required. In Phase I, CFD ...

    STTR Phase I 2010 Department of DefenseNavy
  3. Laser Induced Surface Improvement for Superior Wear Resistance in Extreme Conditions

    SBC: CFD RESEARCH CORPORATION            Topic: AF09BT19

    The objective of this Phase I project is to evaluate the use of novel Laser Induced Surface Improvement (LISI) techniques to provide surface modification to substrate materials which will provide superior wear resistance in extreme conditions. The specific application of interest is the hypersonic metal-to-metal contact that occurs at high speed test track facilities that can and has lead to catas ...

    STTR Phase I 2010 Department of DefenseAir Force
  4. Adaptive Learning for Stall Pre-cursor Identification and General Impending Failure Prediction

    SBC: Frontier Technology Inc.            Topic: N10AT008

    Frontier Technology, Inc. (FTI) and Northeastern University propose to investigate and develop an innovative approach to predict stall events of aircraft engines prior to occurrence and in sufficient time to allow the FADEC controller to adjust engine variables. The team will utilize vector quantization and neural network techniques to develop accurate models of engine behavior that will be used t ...

    STTR Phase I 2010 Department of DefenseNavy
  5. Dynamic Physical/Data-Driven Models for System-Level Prognostics and Health Management

    SBC: GLOBAL STRATEGIC SOLUTIONS LLC            Topic: N10AT009

    Prognostics and health management (PHM) systems are critical for detecting impending faults and enabling a proactive decision process for maintenance or replacement of avionics systems before actual failures occur. A PHM system is essential to enhancing aircraft systems reliability and maintaining a high level of mission readiness and affordability. Current PHM advancements are focused on aircraft ...

    STTR Phase I 2010 Department of DefenseNavy
  6. Surface plasmon enhanced tunneling diode detection of THz radiation

    SBC: ITN ENERGY SYSTEMS, INC.            Topic: AF09BT33

    This Small Business Technology Transfer Research phase I program will develop a new class of uncooled THz detectors for the 1-10THz band with a novel design using surface plasmon resonant cavities with integrated metal-insulator-metal tunneling diodes as the detecting element. Tunneling diodes provide ultrafast broadband response, potentially into the visible (300THz), but demonstrated performanc ...

    STTR Phase I 2010 Department of DefenseAir Force
  7. Characterization of Diffusive Noise Fields Using Ambient Noise Interferometry, Spatial Gradients and Acoustic Bright Spots

    SBC: Rocky Mountain Geophysics, Llc            Topic: N10AT004

    We propose to conduct a feasibility study for utilizing broadband sampling of the diffusive noise field in a dynamic environment. In ambient noise studies, the ability to resolve a wavefield is proportional to its time-bandwidth (TB) product. In a dynamic environment such as in the atmosphere or ocean, the nature of the impinging wave field is changing rapidly so that only short time segments can ...

    STTR Phase I 2010 Department of DefenseNavy
  8. Development of a Computational Method for Prediction of After-Burning Effect

    SBC: Strategic Insight, Ltd.            Topic: N10AT002

    The research objective is to develop a fully functional computational method for prediction of the after-burning effect of different fuels in a wide range of temperature, pressure, and turbulence regimes. Achievement of the objective requires understanding and modeling of key phenomena including (a) post-detonation response of the fuels, (b) near-field coupling of detonation products with particul ...

    STTR Phase I 2010 Department of DefenseNavy
  9. Simulation Tool for Modeling Weakly Ionized Plasma

    SBC: TECH-X CORPORATION            Topic: AF09BT10

    We propose to develop a commercial weakly ionized plasma modeling capability based off of Tech-X’s high energy density plasma fluid code TxFluids. The new additions will be able to be used to model hypersonic vehicle physics including shock waves, plasma chemistry and innovative techniques for blackout mitigation and hypersonic vehicle control through the application of electric and/or magnetic ...

    STTR Phase I 2010 Department of DefenseAir Force
  10. Development of a Computational Method for Prediction of After-Burning Effect

    SBC: BUSA Engineering Consulting            Topic: N10AT002

    This proposal is being submitted in response to the solicitation topic N10A-T002 (Development of a Computational Method for Prediction of After Burning Effect) by BUSA Engineering Consulting (Dr. Jianghui Chao) in collaboration with University of Florida (PI: Prof. S. Balachandar). The overall objective of the proposed effort is to contribute to national defense and security by advancing the state ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government