You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. All fiber-based high power Mid-IR precision frequency combs

    SBC: POLARONYX INC            Topic: AF08BT16

    ABSTRACT: Based on our success in developing the world first commercial 10 W femtosecond fiber laser system and our leading technology development in ultrashort pulsed fiber laser and nonlinear fiber optics, PolarOnyx proposes, for the first time, a compact all fiber based high power (>500 mW) mid-IR supercontinuum source (3-12 micron) to meet with the requirement of the AF solicitation. The lase ...

    STTR Phase II 2010 Department of DefenseAir Force
  2. Dynamic Multisensor Exploitation (DYME)

    SBC: Technology Service Corporation            Topic: ST081008

    The challenges faced by airborne and ground-based sensors in detecting, classifying, identifying, associating and tracking difficult moving targets, such as insurgent forces, operating in difficult terrain such as mountains and forests will be addressed. Our team will quantify the performance that can be achieved using multi-sensor, multi-spectral, and multi-platform techniques, where the sensors ...

    STTR Phase II 2010 Department of DefenseDefense Advanced Research Projects Agency
  3. Identifying compounds that increase mitochondrial performance

    SBC: Eon Corp.            Topic: A08T006

    Defects of mitochondrial performance limit physical and cognitive endurance, and resistance to age-related deterioration and trauma. However large scale screens to identify drug-like compounds that improve mitochondrial function have not taken place, bec

    STTR Phase II 2010 Department of DefenseArmy
  4. Dilution refrigerator technology for scalable quantum computing

    SBC: High Precision Devices, Inc.            Topic: A08T020

    Currently large capacity cryostats, capable of hosting experiments for many qubits, require expensive and hard to obtain liquid cryogens. A few small cryo-free systems exist but they are non-ideal for this use. An opportunity exists for a large scale, c

    STTR Phase II 2010 Department of DefenseArmy
  5. Robust, Real Time, Full Field Strain Monitoring Over Large Areas

    SBC: NEXTGEN AERONAUTICS, INC.            Topic: N09T010

    NextGen Aeronautics in collaboration with Virginia Tech plan to build on our Phase I work and propose to further develop our concepts and designs for a scalable, fast and easy to use optical strain measurement system. Our proposed Phase II effort will focus on the development of a dual level optical camera system which uses one set of cameras to measure strains over the entire test specimen and a ...

    STTR Phase II 2010 Department of DefenseNavy
  6. Novel Algorithm/Hardware Partnerships for Real-Time Nonlinear Control

    SBC: Elissar, LLC            Topic: AF09BT06

    The growing complexity of future military systems demands the development of high-performance nonlinear control algorithms. The goal of this proposal is to develop a specially designed software/hardware architecture to enable real-time autonomous closed-loop control of nonlinear high-dimensional dynamical systems. Following the recent success of pseudospectral (PS) computational control methods in ...

    STTR Phase I 2010 Department of DefenseAir Force
  7. Biojet Fuels from Nonedible Bio-oils and Cellulosic Biomass

    SBC: ENERGIA TECHNOLOGIES, INC.            Topic: N09T034

    The proposed program addresses the emerging needs for the Navy to have cost effective alternative liquid transportation biofuels. The main objectives are to produce bio-jet and bio-diesel fuels from cellulosic biomass and nonedible bio-oils and demonstrate that they have cost structure and product quality comparable to petroleum based fuels. Novel concepts in processing, reactor design and catalys ...

    STTR Phase II 2010 Department of DefenseNavy
  8. Graphene Production Tool

    SBC: STRUCTURED MATERIALS INDUSTRIES, INC.            Topic: AF08BT10

    In this STTR program, Structured Materials Industries, Inc. (SMI) and Cornell University are developing a flexible graphene film deposition system, for both research and production applications. In Phase I, our team demonstrated technical feasibility of scaling existing graphene process technology at Cornell to large wafer sizes. We demonstrated high quality graphene films by both silicon sublim ...

    STTR Phase II 2010 Department of DefenseAir Force
  9. Analysis and Modeling of Foreign Object Damage (FOD) in Ceramic Matrix Composites (CMCs)

    SBC: ALPHASTAR TECHNOLOGY SOLUTIONS LLC            Topic: N10AT010

    A significant barrier to the insertion of ceramic matrix composite (CMC) materials into advanced aircraft engines is their inherent lack of toughness under foreign object Damage (FOD) as well as post FOD. Our team will develop and demonstrate a physics-based model for FOD/post FOD in CMC’s. The model will incorporate physical mechanisms associated with impact for two different CMC systems: a) ma ...

    STTR Phase I 2010 Department of DefenseNavy
  10. Development of Surface Reaction Mechanism for C-SiC-SiO2-Rubber Composite Oxidation in Extreme Oxidizing Condition

    SBC: CFD RESEARCH CORPORATION            Topic: N10AT005

    The purpose of this STTR is to develop comprehensive detailed kinetics for oxidation of C-SiC-SiO2-rubber in extreme oxidizing environment. This material is used as a coating on the outer surface of Navy weapon systems. In order to predict the fate of this material under extreme conditions and mitigate the degradation of the coating, a comprehensive oxidation mechanism is required. In Phase I, CFD ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government