You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Full Mueller Matrix Characterization of Imaged Samples using Digital Holography

    SBC: POLARIS SENSOR TECHNOLOGIES INC            Topic: AF18AT007

    The Phase II effort will be to clearly demonstrate the feasibility and build a prototype of a noncontact, high-quality holographic polarimetry system with pixel level depth and Mueller matrix information with a user-friendly interface to image and display this data. The measurements of each data product will be validated with trusted truth samples. The system will be reproducible and will have a d ...

    STTR Phase II 2019 Department of DefenseAir Force
  2. Human Performance Optimization

    SBC: HVMN Inc.            Topic: SOCOM17C001

    During altitude-induced hypoxia, operator cognitive and physical capacity degrades, compromising individual and team performance. Cognitive degradation is linked to falling brain energy levels, increased reliance on anaerobic energy production and lactate accumulation. Ketones are the evolutionary alternative substrate to glucose for brain metabolic requirements; previous studies demonstrated that ...

    STTR Phase II 2019 Department of DefenseSpecial Operations Command
  3. Cognitive Adaptation and Mission Optimization (CAMO) for Autonomous Teams of UAS Platforms

    SBC: OPTO-KNOWLEDGE SYSTEMS INC            Topic: N17BT035

    The Navy needs cognitive control capabilities that enable an autonomous robotic team comprised of a ground control station node and a team of UAS platforms to operate independently (or with minimal human oversight) while carrying out complex missions. A cognitive control capability needs to be developed that concurrently optimizes the balance of mission risk / performance with respect to the Navy ...

    STTR Phase II 2019 Department of DefenseNavy
  4. Integrated learning-based and regularization-based super resolution for extreme MWIR image enhancement

    SBC: OPTO-KNOWLEDGE SYSTEMS INC            Topic: N17AT016

    OKSI and Northwestern University propose to develop a single-image super-resolution (SR) methodology for mid-wave infrared (MWIR) imagery that combines learning-based and regularization-based approaches to produce extreme enhancement of low-resolution images. We will also develop a detector-limited imaging system specifically designed to be used with the SR methodology for which even higher levels ...

    STTR Phase II 2019 Department of DefenseNavy
  5. SmallSat Stirling Cryocooler for BMDS (SSC-X)

    SBC: WECOSO, INC.            Topic: MDA17T003

    West Coast Solutions (WCS) proposes the development of the SSC-X Stirling cryocooler to enable the deployment of infrared (IR) payloads on small satellite platforms. We achieve extreme miniaturization (

    STTR Phase II 2019 Department of DefenseMissile Defense Agency
  6. Optimizing Human-Automation Team Workload through a Non-Invasive Detection System

    SBC: Stottler Henke Associates, Inc.            Topic: ST16C003

    We propose to investigate, in collaboration with MGH Voice Center and Altec, Inc., application of surface electromyography (sEMG) to assessing cognitive workload, strain, and overload. Specifically, sEMG sensors placed on the face and neck will detect emotional/motor responses to workload strain. The proposed effort will build on the substantial sEMG experience of our partner, MGH (including resea ...

    STTR Phase II 2018 Department of DefenseDefense Advanced Research Projects Agency
  7. Improved High-Frequency Bottom Loss Characterization

    SBC: HEAT, LIGHT, AND SOUND RESEARCH, INC.            Topic: N17AT026

    We propose development of an improved bottom database suitable for use in the frequency range of 1-10 kHz. Measured transmission loss (TL) and reverberation level (RL) will be jointly processed in building the database. The influence of the rough sea surface, rough seafloor, as well as subbottom heterogeneity will be accounted for during database generation. The rough sea surface will be character ...

    STTR Phase II 2018 Department of DefenseNavy
  8. Transformation Accelerated through Redesign, Guidance, and Enhanced Training (TARGET)

    SBC: TIER 1 PERFORMANCE SOLUTIONS LLC            Topic: N17AT017

    As submarine threats from adversary countries continue to rise, the U.S. Navy must maintain and expand its anti-submarine warfare (ASW) capabilities. Warfighter readiness is the linchpin of the Navy’s ASW strategy, but the complexity of the ASW domain necessitates time-consuming training, and practical experiences to transfer those skills to the operational environment. Innovative training appro ...

    STTR Phase II 2019 Department of DefenseNavy
  9. Adaptive Optics for Nonlinear Atmospheric Propagation of Laser Pulses

    SBC: ADVANCED SYSTEMS & TECHNOLOGIES INC            Topic: N17AT024

    Filamentation of ultra-short laser pulse propagation in non-linear media offers significant potentials allowing to address numerous problems in military and commercial sectors. However, practical implementation of this requires an ability to control the USLP at its propagation through inhomogeneous media, like turbulent atmosphere. On the basis of our approach for combating turbulence effects on p ...

    STTR Phase II 2018 Department of DefenseNavy
  10. High-Speed Simultaneous Multiple Object Detection System

    SBC: FREENT TECHNOLOGIES, INC.            Topic: MDA16T006

    FreEnt Technologies, Inc., A2Z Innovations, Inc., and the University of Alabama Aerospace Research Center (UAH/ARC) have teamed together to design, develop, and perform ground-based-demonstrations of a High-Speed Simultaneous Multiple Object Detection (HS-SMOD) System for MDA. The HS­SMOD system uses a simple but innovative technique of a passive fiber-optic grid and high-speed COTS opto-electr ...

    STTR Phase II 2018 Department of DefenseMissile Defense Agency
US Flag An Official Website of the United States Government