You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Medium Voltage Direct Current (MVDC) Fault Detection, Localization, and Isolation

    SBC: ISSAC Corp            Topic: N16AT009

    During the Phase II effort, the ISSAC Team will investigate several objectives and questions posed in Phase I efforts, in order to best develop a draft specification for NGES MVDC DLI systems. This includes exploring notional and conceptual architectures and discerning thresholds for DLI parameters; exploring individual and hybrid protection plan technologies to drive performance requirements for ...

    STTR Phase II 2018 Department of DefenseNavy
  2. Medium Voltage Direct Current (MVDC) Grounding System

    SBC: CONTINUOUS SOLUTIONS LLC            Topic: N16AT012

    During the Phase 1 effort, there were several achievements toward the design of grounding systems for MVDC architectures. For one, the common-mode equivalent circuit (CMEC) modeling approach that was derived at Purdue under ESRDC funding, was validated in a reduced-scale hardware setup at Purdue. The system studied consisted of a single generator, active rectifier, inverter, and propulsion machine ...

    STTR Phase II 2018 Department of DefenseNavy
  3. Modular Thermal Management System for Electronics Enclosures

    SBC: MAINSTREAM ENGINEERING CORP            Topic: N16AT014

    The heat load from Navy combat system electronics housed in Mission Critical Enclosures (MCEs) continues to increase. During Phase I, Mainstream designed and demonstrated a modular, scalable thermal management system (TMS) for existing and future MCE cabinets with triple the cooling capacity of the legacy TMS. In Phase II, Mainstream will transition the TMS to the Navy for retrofit and next-genera ...

    STTR Phase II 2018 Department of DefenseNavy
  4. Integrated Computational Material Engineering Approach to Additive Manufacturing for Stainless Steel (316L)

    SBC: SENVOL LLC            Topic: N16AT022

    The objective in this project is to implement and validate a probabilistic qualification framework that will enable additive manufacturing (AM) materials and part qualification through the use of a data-driven predictive model within a statistical framework. Senvol seeks to develop and validate a data-driven ICME probabilistic framework for assisting qualification of AM materials and parts. Phase ...

    STTR Phase II 2018 Department of DefenseNavy
  5. Epitaxial Technologies for Gallium Oxide Ultra High Voltage Power Electronics

    SBC: AGNITRON TECHNOLOGY, INC.            Topic: N16AT023

    xß-Ga2O3 has emerged as a potentially disruptive semiconductor with a predicted breakdown field of ~8 MV/cm which is more than twice the breakdown field for the incumbent wide bandgap semiconductors GaN and SiC. The availability of ß-Ga2O3 bulk substrates sets this material apart from other wide bandgap materials for power electronic applications. However, the challenge is to find suitable epita ...

    STTR Phase II 2018 Department of DefenseNavy
  6. Phase-Change Materials for Tunable Infrared Devices

    SBC: PLASMONICS INC            Topic: N17AT020

    There is a critical need for the development of dynamic IR materials that can be used to form device level components and systems necessary for mid to long wave infrared (3-12 µm) applications. To meet these future needs, the team proposes to develop tunable optical elements based around metamaterial surfaces or metasurfaces. Metasurfaces are a class of engineered materials where arrays of sub-wa ...

    STTR Phase II 2018 Department of DefenseNavy
  7. Computational Biology Platform Technology for Cellular Reprogramming

    SBC: IREPROGRAM, LLC            Topic: ST17C001

    Methods for interconversion between cell types (cellular reprogramming) are currently discovered through resource intensive trial and error. Experiments may test a multitude of transcription factors to identify correct combinations that influence cell fate. In addition, reprogramming approaches commonly use stem cell intermediates such as induced pluripotent stem cells (iPSCs), which are generated ...

    STTR Phase I 2018 Department of DefenseDefense Advanced Research Projects Agency
  8. Processes for Fabrication of Atomically Precise Strongly Correlated Materials

    SBC: XALLENT INC.            Topic: ST17C002

    Developing knowledge-driven nanoelectronics for military applications requires understanding the fundamental physics that governs the behavior of the underlying materials. Strongly correlated materials have very desirable properties such as interfacial superconductivity, ferroelectricity, ferromagnetism, and huge magnetoresistance, which make them an ideal set of candidates to integrate with semic ...

    STTR Phase I 2018 Department of DefenseDefense Advanced Research Projects Agency
  9. Additive Manufacturing Sensor Fusion Technologies for Process Monitoring and Control.

    SBC: SENVOL LLC            Topic: DLA18A001

    The Department of Defense (DoD) has a demand for out-of-production parts to maintain mission readiness of various weapons platforms. Additive manufacturing (AM) is an exciting and promising manufacturing technique that can make out-of-production parts and holds the potential to solve supply chain issues, such as high costs (i.e. for low-volume parts) and sole sourcing risks. The ability of AM to s ...

    STTR Phase I 2018 Department of DefenseDefense Logistics Agency
  10. Additive Manufacturing Sensor Fusion Technologies for Process Monitoring and Control.

    SBC: ARCTOS Technology Solutions, LLC            Topic: DLA18A001

    Universal Technology Corporation (UTC) has teamed with the University of Dayton Research Institute (UDRI), Stratonics, and Macy Consulting to demonstrate not only the transitionability into commercial systems, but also to develop the data analytics and monitoring and control requirements to extract the full value fromseveral sensors, including the Stratonics ThermaViz, acoustic and profilometry se ...

    STTR Phase I 2018 Department of DefenseDefense Logistics Agency
US Flag An Official Website of the United States Government