You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Reliable Manufacturing of Scandia-Doped Tungsten Powders for Thermionic Cathodes

    SBC: NGIMAT, LLC            Topic: N15AT010

    In this STTR effort nGimat will partner with the University of Kentucky to develop a new process for manufacturing scandia-doped tungsten powder for use in vacuum tube cathode devices. While a significant amount of research over the last several decades has shown promise for scandate cathode materials, reliable manufacturing processes that enable commercialization of this technology have remained ...

    STTR Phase I 2015 Department of DefenseNavy
  2. Novel Approach to Hybrid High Temperature Superconducting Cable

    SBC: TAI-YANG RESEARCH COMPANY            Topic: N15AT016

    To handle the so-called black start fault contingency, Energy to Power Solutions proposes the use of a novel hybrid cable design. The cable would be designed to handle the full 100 % electric power load under normal operating and battle conditions (i.e. a fully/partially functioning cryogenic cooling system operating at cryogenic temperatures ~ 50-60 K), and capable of handling 30 % of the rated p ...

    STTR Phase I 2015 Department of DefenseNavy
  3. Stable High Bandwidth AO Control with physical DM constraints

    SBC: Guidestar Optical Systems, Inc.            Topic: AF18AT008

    Adaptive optics (AO) system performance is hindered by the mechanical limits of the deformable mirror (DM), namely stroke limits, interactuator stroke limits, and mechanical resonance.The nature of the multi-in multi-out (MIMO) control system does not lend itself well to notch filters to combat the mechanical resonances, and the stroke limits introduce non-linearities to the system.The traditional ...

    STTR Phase I 2018 Department of DefenseAir Force
  4. Open Standard for Display Agnostic 3D Streaming (DA3DS)

    SBC: Third Dimension Technologies LLC            Topic: AF16AT07

    The Air Force has identified a need for the creation of a common streaming model for 3D data that is agnostic to the display technology. To address this need, Third Dimension Technologies (TDT) and Oak Ridge National Laboratory (ORNL) propose to form a c...

    STTR Phase I 2016 Department of DefenseAir Force
  5. Hypersonic Experimental Aerothermoelastic Test (HEAT)

    SBC: GLOBAL AEROSPACE CORPORATION            Topic: AF16AT24

    The Air Force is interested in developing technology that would enable long duration hypersonic flight with reusable aircraft. Hypersonic flow presents many design challenges that can be encapsulated into an aerothermoelastic problem, i.e., a complex dyn...

    STTR Phase I 2016 Department of DefenseAir Force
  6. Anisotropic Property Manipulation of Selective Laser Melted GRCop-84

    SBC: SPECIAL AEROSPACE SERVICES            Topic: AF18AT009

    In partnership with the Colorado School of Mines Alliance for the Development of Additive Processing Technologies and with support from the Johns Hopkins University Energetic Research Group, Special Aerospace Services will provide the Air Force with characterization of fully dense Selective Laser Melted GRCop-84 subjected to a variety of manipulations that affect key performance metrics for regene ...

    STTR Phase I 2018 Department of DefenseAir Force
  7. AgileBeam Reconfigurable Free Space Optical Communication System

    SBC: SA PHOTONICS, LLC            Topic: AF18AT010

    Free Space Optical (FSO) communication systems provide many benefits for satellite communications, including high data rates and low Size, Weight and Power (SWaP) compared to traditional RF communication systems.Additionally, FSO systems operate without RF emissions and are inherently immune to RF interference and jamming.The narrow optical beams and small Field-of-View of the optical receivers al ...

    STTR Phase I 2018 Department of DefenseAir Force
  8. High Fidelity Rotorcraft Towing Modeling and Simulation with Towed Magnetic Anomaly Detection System

    SBC: ADVANCED ROTORCRAFT TECHNOLOGY, INC.            Topic: N15AT009

    Towing of a Magnetic Anomaly Detection (MAD) system is an important aspect of rotorcraft maritime operation in support of Anti-Submarine Warfare (ASW). The vibratory rotary wing platform combined with the long and flexible towing cable, the low mass ratio of the towed body to the total mass (the sum of the tow body and the towing aircraft), and the rotor downwash impingement on the towed body duri ...

    STTR Phase I 2015 Department of DefenseNavy
  9. Robust Mission and Safety Critical Li-Ion BMS for Aerospace Applications

    SBC: Space Information Laboratories, LLC            Topic: N15AT001

    Space Information Labs (SIL) and South Dakota State University (SDSU) have teamed to provide Navy an innovative, but also producible, approach to a robust mission and safety critical Li-Ion battery man-agement system across Navy platforms to include aircraft, helicopters, UAS, missiles and directed energy weapons. SILs modular and scalable Li-Ion Intelli-Pack battery system will be designed to fro ...

    STTR Phase I 2015 Department of DefenseNavy
  10. Volumetric Wavefront Sensing for the Characterization of Distributed-Volume Aberrations

    SBC: Guidestar Optical Systems, Inc.            Topic: AF18AT006

    Modern Directed Energy (DE) missions require target engagements at low elevation angles and long ranges.These engagement geometries require propagation through distributed-volume turbulence. To correct for distributed-volume turbulence effects, an estimation of the turbulence along the propagation path is required. Correcting for these image aberrations will improve the quality of the target image ...

    STTR Phase I 2018 Department of DefenseAir Force
US Flag An Official Website of the United States Government