You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. UAV Guidance on GPUs by Nominal Belief-State Optimization

    SBC: Apolent Corporation            Topic: AF09BT06

    We apply the theory of partially observable Markov decision processes (POMDPs) to the design of guidance algorithms for controlling the motion of unmanned aerial vehicles (UAVs) with on-board sensors for tracking multiple ground targets. While POMDPs are intractable to optimize exactly, principled approximation methods can be devised based on Bellman’s principle. We introduce a new approximation ...

    STTR Phase I 2010 Department of DefenseAir Force
  2. Supercontinuum Fiber Laser for Multi-Spectral Energy Propagation

    SBC: POLARONYX INC            Topic: AF09BT01

    Based on our success in developing the world first commercial high power femtosecond fiber laser system and our leading technology development in ultrashort pulsed fiber laser and nonlinear fiber optics, PolarOnyx proposes, for the first time, a compact all fiber based high power (>kW) mid-IR supercontinuum source (1-5 micron) to meet with the requirement of the AF solicitation AF09-BT01. The lase ...

    STTR Phase I 2010 Department of DefenseAir Force
  3. Advanced High Power Solid-State Burst Generator

    SBC: NESS ENGINEERING, INC.            Topic: AF09BT14

    Recent advances in dielectric and magnetic materials have spurred renewed interest in the field of solid state pulse and RF burst generation using Non-Linear Transmission Lines (NLTL) . The NLTL approach to HPM and UWB generation eliminates the need for an electron beam, vacuum system and magnets required in conventional HPM sources. Furthermore, the novel waveforms of NLTL generated pulses promi ...

    STTR Phase I 2010 Department of DefenseAir Force
  4. Innovative Combat Simulation to Craft Tomorrow’s UAV Operational Doctrine

    SBC: HPS Simulations            Topic: AF09BT31

    Existing computer combat wargames offer a sophisticated and high fidelity base platform for accurately modeling standard combat scenarios. However, the rapid development of UAV capabilities in terms of sizes, weapons, sensors, communications and flight ability is presenting a new challenge for these simulations. At the same time, the general state of world affairs is changing such that the likeli ...

    STTR Phase I 2010 Department of DefenseAir Force
  5. Ultrahigh Efficiency Quantum Dot Multi-photon Photovoltaics using Nipi Lateral Architecture

    SBC: CFD RESEARCH CORPORATION            Topic: AF09BT20

    Higher efficiency solar cells are needed to reduce solar array mass, volume, and cost for Air Force space missions. Intermediate-band quantum-dot (QD) solar cells can yield dramatically higher efficiencies than current multi-junction (MJ) technologies. However, several issues must be addressed to demonstrate manufacturable, high efficiency devices. CFDRC aims to develop: 1) High-efficiency, ligh ...

    STTR Phase I 2010 Department of DefenseAir Force
  6. Software Defined Multi-Channel Radar Receivers for X-band Radars

    SBC: MAXENTRIC TECHNOLOGIES LLC            Topic: MDA09T003

    The United States Missile Defense Agency (MDA) is searching for a software-defined multi-channel radar receiver that would provide improved performance and added flexibility over currently deployed radar systems. In response, MaXentric is proposing a system codenamed MASR (Manycore Adaptive Software Radar). The MASR system is composed of a hierarchy of X-band front-ends, high-speed digitizers, F ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  7. Multi Junction Solar cells for Satellite

    SBC: CFD RESEARCH CORPORATION            Topic: MDA09T005

    Higher efficiency solar cells are needed to reduce mass, volume, and cost of DoD space missions. However, to achieve higher efficiency and radiation hardness of the best to date multi-junction photovoltaic (PV) devices, several challenges must be addressed. This project aims to develop: 1) Quantum Well (QW)-based multi-junction cell that exhibits enhanced efficiency, and 2) Radiation-hardened PV c ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  8. High Efficiency Gain Media for Eye-Safer 1.55 µm Ultrafast Fiber Amplifiers

    SBC: Raydiance, Inc.            Topic: N10AT012

    Compelling applications of infrared ultrafast lasers—ranging from ship self defense and aircraft self defense, to medical and micromachining applications—have defined a critical performance point at about one millijoule per pulse from a reliable and robust portable laser system with high average power. Increasing amplifier efficiency is a critical need in order to reach high average powers nee ...

    STTR Phase I 2010 Department of DefenseNavy
  9. Terahertz Focal Plane Arrays

    SBC: Aegis Technologies Group, LLC, The            Topic: AF09BT33

    Recent advances in THz-source stability, power and practicality have opened the door for active THz imaging in both commercial and military settings. AEgis is teaming with U Buffalo to develop a THz detection device that utilizes classical rectification effects in semiconductor point contacts (SPCs) to achieve response in the 1 to 10 THz range and is capable of operating at temperatures over 150 K ...

    STTR Phase I 2010 Department of DefenseAir Force
  10. Fast, High-Order algorithms for Many-Core and GPU-based Computer Architectures

    SBC: MATHEMATICAL SYSTEMS & SOLUTIONS, INC.            Topic: AF09BT18

    We propose algorithm development and efficient GPU implementation of numerical PDE solvers based on four novel high-order methodologies: 1) High-order Discontinuous Galerkin approaches, 2) Fast High-Order boundary integral methods, 3) Convergent FFT-based methodologies for evaluation of computational boundary conditions, and 4) Fourier Continuation methods. These methodologies are applicable to a ...

    STTR Phase I 2010 Department of DefenseAir Force
US Flag An Official Website of the United States Government