You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Principled Design of an Augmented Reality Trainer for Medics

    SBC: UNVEIL LLC            Topic: DHP17A003

    Augmented reality (AR) offers the ability to enhance existing combat medic training by including perceptual cues and adaptive training elements to traditional simulation-based training using manikins. Unveil has developed a training system called the Macrocognitive AR Trainer (MART). MART is designed to foster the development of macrocognitive skills (e.g., sensemaking, assessment skills, mental m ...

    STTR Phase II 2018 Department of DefenseDefense Health Agency
  2. Dynamic virtual moulage based on thin film adhesive displays

    SBC: ARCHIE MD INC.            Topic: DHA17A002

    Providing Army combat medics with meaningful experience in treatment of battlefield injuries is a particular challenge. Moulage has the potential to assist in acquiring what could otherwise be very hard-to-come-by preparatory experience for distressing real-life emergencies medics and soldiers may encounter in the field. However, current approaches to moulage are limited in their ability to reflec ...

    STTR Phase II 2018 Department of DefenseDefense Health Agency
  3. Simultaneous Multiple Object Detection System

    SBC: Semquest, Inc.            Topic: MDA16T006

    An advanced hit detection technology is needed for MDA that can report impacts at hyper-velocities and at multiple hit locations. We present a technology with a high level of performance that leverages decades of hit technology experience and utilizes existing technologies developed under previous efforts. Our technology offers a low latency non-interpolated direct indicator of multiple hit locati ...

    STTR Phase II 2018 Department of DefenseMissile Defense Agency
  4. Rydberg-atom RF Sensors for Direction Finding and Geolocation (RADARS)

    SBC: COLDQUANTA, INC.            Topic: AF17AT028

    ColdQuanta, in partnership with Dr. Zoya Popovic at the University of Colorado at Boulder, proposes to develop a three-dimensional quantum-enhanced radio-frequency (RF) signal sensor and direction finder. Our approach combines Rydberg-atom-based RF electrometry and discrete lens arrays (DLAs) of planar antennas. The DLA will serve as a Fourier optic for an incident wave, and a Rydberg-atom RF elec ...

    STTR Phase II 2018 Department of DefenseAir Force
  5. Lightweight Magnesium Components of a Missile Body

    SBC: TERVES, LLC            Topic: MDA17T004

    Magnesium alloys have 35% lower density compared to aluminum, with improved temperature stability compared to high strength aluminum.They can also be fabricated with minimum gauge thicknesses considerably thinner than fiber composites, and are weldable, with much higher impact resistance.Traditional magnesium alloys, however, have had lower strengths than more developed aluminum alloys.Powder meta ...

    STTR Phase I 2018 Department of DefenseMissile Defense Agency
  6. Quantum Sensor for Direction Finding and Geolocation

    SBC: HYPRES INC            Topic: AF17AT028

    In this STTR phase I, HYPRES and University of California Riverside will demonstrate the feasibility of a three-dimensional electromagnetic (EM) sensor for accurate vector sensing and geo-location of complex RF emitters exploiting the novel quantum electrodynamic properties stemming from innovations in superconducting nanoelectronics specifically in utilizing direct-write, high temperature superco ...

    STTR Phase I 2018 Department of DefenseAir Force
  7. Energy Efficient, Non-Silicon Digital Signal Processing (DSP)

    SBC: HYPRES INC            Topic: N17AT027

    Superconductor digital circuits, operating at very high clock speed, can directly process wideband digitized radio frequency (RF) signals. By integrating such digital processing circuitry together with superconductor analog-to-digital converters (ADCs), we propose to develop the next generation digital-RF receivers. Leveraging the recent development of multiple superconductor ADCs on the same chip ...

    STTR Phase II 2018 Department of DefenseNavy
  8. Meso-scale Framework for Simulating the Response of Structural Reactive Materials to Shock Loading

    SBC: STREAMLINE NUMERICS, INC.            Topic: AF16AT23

    Structural reactive materials (SRMs) or multifunctional energetic materials offer the ability to combine the high energy release rates of traditional high explosives with structural strength.When successfully formulated they can lead to light-weight, high-performance and hitherto inaccessible designs of munitions. The key feature of structural energetic materials (SEMs), perhaps even more so than ...

    STTR Phase II 2018 Department of DefenseAir Force
  9. Test Article Printing with Laser Additive Manufacturing (TAP-LAM) for Threat Surrogate Target Production

    SBC: MV INNOVATIVE TECHNOLOGIES, LLC            Topic: MDA17T001

    Optonicus proposes development of the TAP-LAM (Test Article Printing with Laser Additive Manufacturing for Threat Surrogate Target Production) powder bed fusion and directed energy depositions systems. The TAP-LAM metal additive manufacturing system will advance strategic missile defense system testing capabilities by improving 3D printing methods to rapidly produce large-scale threat surrogate ta ...

    STTR Phase I 2018 Department of DefenseMissile Defense Agency
  10. Laser Additive Manufacturing of Seven Thousand Series Aluminum Aircraft Components (LAM-STAAC)

    SBC: MV INNOVATIVE TECHNOLOGIES, LLC            Topic: N18AT005

    Alloys of aluminum in the 7000 series are known to have good weight, strength, and fatigue properties and are commonly used in Naval aircraft components. Recent manufacturing trends are increasingly focused on additive manufacturing (AM) methods as a way to reduce lead time, cost, and to improve part performance. Current additive manufacturing techniques are unable to fabricate parts in 7000 serie ...

    STTR Phase I 2018 Department of DefenseNavy
US Flag An Official Website of the United States Government