You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Naval Special Warfare (NSW) Underwater Secure Text Messaging and Diver Locater

    SBC: YOTTA NAVIGATION CORP            Topic: N10AT034

    Yotta Navigation and The Ohio State University propose to develop a complete diver text messaging and locator system. The system will securely transmit preformatted and free-text messages, and will be able to accurately determine range and bearing, at distances of up to 1000 meters. This system consists of two major components. An ultrasonic cylindrical array, mounted on a swimmer delivery vehicl ...

    STTR Phase I 2010 Department of DefenseNavy
  2. Tactical 4 K Cryocooler: Study and Architecture Definition

    SBC: IRIS TECHNOLOGY CORPORATION            Topic: N10AT026

    Iris Technology, in collaboration with Georgia Tech and Raytheon, proposes to perform advanced 3D CFD modeling to guide the architecture selection for a tactical 4K Cryocooler. Iris will lead the System Design and Program Management efforts. Georgia Tech is the lead organization on the Analysis. Raytheon is providing the underlying mechanical cryocooler technology. The preliminary technical base ...

    STTR Phase I 2010 Department of DefenseNavy
  3. Analysis and Modeling of Foreign Object Damage (FOD) in Ceramic Matrix Composites (CMCs)

    SBC: ALPHASTAR TECHNOLOGY SOLUTIONS LLC            Topic: N10AT010

    A significant barrier to the insertion of ceramic matrix composite (CMC) materials into advanced aircraft engines is their inherent lack of toughness under foreign object Damage (FOD) as well as post FOD. Our team will develop and demonstrate a physics-based model for FOD/post FOD in CMC’s. The model will incorporate physical mechanisms associated with impact for two different CMC systems: a) ma ...

    STTR Phase I 2010 Department of DefenseNavy
  4. Novel Approaches to Service Virtualization in Mobile Ad Hoc Networks

    SBC: SUNS-Tech Corp.            Topic: N10AT006

    A clean-slate approach is needed for the design and implementation of wireless networks that self organize and can scale with the number of users, devices, and information objects and services that network users wish to share. This project will develop a new architecture and protocols for wireless networks in which naming, addressing, routing, and channel access are redefined to take into account: ...

    STTR Phase I 2010 Department of DefenseNavy
  5. Autonomous Landing at Unprepared Sites for a Cargo Unmanned Air System

    SBC: SYNETICS SYSTEMS ENGINEERING CORP.            Topic: N10AT039

    A rapid prototyping simulation for the Autonomous Rotorcraft Land & Take-Off (ARLTO) system will be developed to analyze and evolve requirements for the landing and take-off of a Rotary-wing Autonomous Air Vehicle (RAAV) from unprepared terrain. The simulation is based upon the Task-Pilot-Vehicle modeling system and features a UH-60 configured with a Sliding Mode Control (SCM) inner loop closure. ...

    STTR Phase I 2010 Department of DefenseNavy
  6. Ocean Energy Extraction for Sensor Applications

    SBC: TREX ENTERPRISES CORPORATION            Topic: N08T021

    Remote ocean instrumentation often relies on floating buoys with sensors to acquire time series measurements such as ambient noise, acoustic tracking or communications. The operating lifetime of small remote buoys is limited by batteries (often to 12 - 24 hrs), and recharging is so inconvenient or impractical that many small sonobuoys are designed to scuttle themselves after about a day. The assoc ...

    STTR Phase II 2010 Department of DefenseNavy
  7. Monte Carlo Sampling Based Collision Detection Algorithm Development And False Positive And False Negative Rate Analysis: A Bayesian Approach

    SBC: Princeton Vision LLC            Topic: ST081005

    In this Phase II proposal, the main thrust is to build a hardware MCICD prototype, and validate the FAR/FNR through real vehicle testing. By leveraging the existing LADAR based sensing platform in CMU, we expect to shorten the development cycle and reduce the overall cost. Extensive real vehicle testing is expected both in staged scenarios and in normal traffic. In this Phase II program, we also p ...

    STTR Phase II 2010 Department of DefenseDefense Advanced Research Projects Agency
  8. Plasmonic Sensor Array

    SBC: ULTIMARA INC            Topic: A10AT002

    The goal of this program is to develop devices that can detect small electric fields over large frequency ranges while being compact and power efficient. We propose an electro-optic resonant plasmon that enhances the electro-optic phase shift in a small volume (

    STTR Phase I 2010 Department of DefenseArmy
  9. Plasmonic MEMS Sensor Array

    SBC: Five Stones Research Corporation            Topic: A10AT002

    Sensor development researchers and engineers have perpetually sought novel methods to reduce sensor size and improve performance. Continued miniaturization of sensors through micromachining has enabled novel applications and introduced new paradigms for engineered systems to interact with the world. The challenge has always been to improve performance while continually reducing size. In the cur ...

    STTR Phase I 2010 Department of DefenseArmy
  10. Novel Algorithm/Hardware Partnerships for Real-Time Nonlinear Control

    SBC: Elissar, LLC            Topic: AF09BT06

    The growing complexity of future military systems demands the development of high-performance nonlinear control algorithms. The goal of this proposal is to develop a specially designed software/hardware architecture to enable real-time autonomous closed-loop control of nonlinear high-dimensional dynamical systems. Following the recent success of pseudospectral (PS) computational control methods in ...

    STTR Phase I 2010 Department of DefenseAir Force
US Flag An Official Website of the United States Government