You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Theoretical Innovations in Combining Analytical, Experimental, and Computational Combustion Stability Analysis

    SBC: HYPERCOMP INC            Topic: AF09BT38

    Combustion stability is an important consideration in the design of liquid rocket engines. While fundamental modes of unstable operation in simple geometries are easily identified using analytical methods, recent times have seen these methods greatly expand in scope, applied in semi-numerical format to increasingly complex geometries and flow situations. Much remains to be explored in understandin ...

    STTR Phase I 2010 Department of DefenseAir Force
  2. Advanced Computational Methods for Study of Electromagnetic Compatibility

    SBC: HYPERCOMP INC            Topic: AF09BT13

    The leakage of electromagnetic (EM) energy into air vehicles, and particularly into ordnance, poses a hazard that requires careful evaluation. Under current guidelines, such evaluations are primarily to be carried out through extensive testing of items under possible field conditions, a process that can be both time-consuming and costly. The scope of this STTR Phase I activity is to implement a h ...

    STTR Phase I 2010 Department of DefenseAir Force
  3. High-order modeling of applied multi-physics phenomena

    SBC: HYPERCOMP INC            Topic: AF08T023

    The gap between research in numerical methods and popular commercial solvers in CFD and related areas has been gradually widening in the recent past, particularly in the realm of high order accurate algorithms. At HyPerComp we are advancing a suite of high order codes based on the discontinuous Galerkin (DG) technique that can be used in electromagnetics, fluid mechanics, MHD and radiative heat tr ...

    STTR Phase II 2010 Department of DefenseAir Force
  4. Efficient Multi-Scale Radiation Transport Modeling

    SBC: HYPERCOMP INC            Topic: AF08T020

    Radiative heat transfer is a dominant mode of heat transfer in combustion and propulsion systems as well as for hypersonic flow encountered during planetary entry. Solution of the Radiative Transfer Equation (RTE), which is an integro-differential equation, places stringent requirements on the computational resources as: (a) the radiation depends both on spatial and angular dimensions, (b) radiati ...

    STTR Phase II 2010 Department of DefenseAir Force
  5. Higher Order Mesh Generation for Simulation of Complex Systems

    SBC: HYPERCOMP INC            Topic: AF14AT07

    In this program, HyPerComp and University of Michigan have teamedtogether to develop a high-order grid generator for Euler and viscousmeshes. The grid generator is based on HyPerComps successful generalpurpose CAD2Mesh software and is being integrated with HyPerCompsHDphysics and U. Michigans XFlow DG high-order solvers. High-order gridgeneration methods are being implemented to accurately capture ...

    STTR Phase II 2016 Department of DefenseAir Force
  6. High Temperature Metal RubberTM Sensors For Skin Friction Measurements

    SBC: NANOSONIC INC            Topic: AF09BT32

    The Air Force Phase I STTR program would develop and demonstrate high temperature version of ‘sensor skins’ capable of multi-axis flow characterization on air breathing hypersonic engines. This would build upon NanoSonic’s successful demonstration of Metal Rubber™ transducer materials for the measurement of flow-induced skin friction and pressure at low temperatures and transonic and super ...

    STTR Phase I 2010 Department of DefenseAir Force
  7. Electronically Dimmable Eye Protection Devices (EDEPD)

    SBC: NANOSONIC INC            Topic: AF18BT003

    Through the proposed Phase I Air Force STTR program, NanoSonic and Virginia Tech will demonstrate metal organic framework materials and electrospray fabrication methods for the manufacture of eye protection devices that are capable of controlling the amount of light transmitted through the device. The objective of this program is to 1) increase the dynamic range and speed of electronically switche ...

    STTR Phase I 2019 Department of DefenseAir Force
  8. Verification and Validation of Algorithms for Resilient Complex Software Controlled Systems

    SBC: XL SCIENTIFIC LLC            Topic: AF17CT05

    This effort seeks verification tools and techniques to ensure safety and stability of spacecraft Guidance, Navigation, and Control (GN&C) algorithms, particularly the attitude control system integrated with autonomy software. Advanced control algorithms and autonomy are increasingly necessary to enable responsiveness of fleets of vehicles to attitude constraints and object avoidance. Verus Researc ...

    STTR Phase II 2019 Department of DefenseAir Force
  9. Information Theory Models for Multi-Sensor Design of Signature Exploitation Systems

    SBC: NOVATEUR RESEARCH SOLUTIONS LLC            Topic: AF16AT29

    This STTR Phase I project will develop a unified information theoretic framework for multi-sensor target recognition system that enables quantification of information contribution and synergistic combination of features from different sensor modalities. ...

    STTR Phase I 2016 Department of DefenseAir Force
  10. Radio Frequency (RF) Filter Tuning Element

    SBC: MAXENTRIC TECHNOLOGIES LLC            Topic: AF18AT015

    To meet the requirements of the AF18A-T015 solicitation, MaXentric and University of California San Diego are proposing the development of a low loss, high linearity capacitor. The tunable capacitor target is a compact integrated design, capable of a tuning range up to 4:1, with a minimum Q of 80 at 4 GHz, and handling up to 20W CW. During phase I, UCSD studied a novel varactor structure to improv ...

    STTR Phase II 2019 Department of DefenseAir Force
US Flag An Official Website of the United States Government