You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Coupled Cluster Methods for Multi-Reference Applications

    SBC: ACES QC, LC            Topic: AF09BT40

    The objective of Phase I is to identify the strengths and weaknesses of the various multi-reference coupled-cluster (MRCC) methods that have been proposed for the description of molecular states depending upon near degeneracies and non-dynamic electron correlation. Such effects are encountered in bond breaking, at transition states, for complex open shell systems like transition metal atoms, and f ...

    STTR Phase I 2010 Department of DefenseAir Force
  2. Theoretical Innovations in Combustion Stability Research: Integrated Analysis and Computation

    SBC: Kassoy Innovative Science Solutions            Topic: AF09BT38

    Quantitative predictions of reactive flow dynamics from large-scale simulations of Liquid Rocket Engines (LRE) appear to be model dependent. Relationships and coupling among the dominant mechanisms most responsible for destabilization are obscured by the complexities of the model and subtle consequences of inherent ad hoc approximations not supported by mathematical rationale. The reliability of ...

    STTR Phase I 2010 Department of DefenseAir Force
  3. Tools for Modeling & Simulation of Molecular and Nanomaterials for Optically Responsive Devices

    SBC: EIC LABORATORIES, INC.            Topic: AF09BT30

    The effective de novo prediction of linear and nonlinear optical properties of materials would be a great resource for developers of military and commercial optical devices. Of particular military interest are multiphoton processes that can be optimized for laser protection as well as for improving photovoltaic efficiencies above the Shockley–Queisser limit, for photodynamic therapy and for opti ...

    STTR Phase I 2010 Department of DefenseAir Force
  4. Ink Jet Printing of Flexible Carbon Nanotube Based Transistors over a Large Area(1001-458)

    SBC: TRITON SYSTEMS, INC.            Topic: AF09BT26

    Triton Systems, Inc. and our partners, propose to develop a commercially viable process to print high speed thin film transistors (TFTs) onto large area flexible substrates. We propose to use a commercially available deposition system to deposit high mobility semiconductors onto flexible substrates. It uses an additive process with no masks or screens necessary. The printing technology is read ...

    STTR Phase I 2010 Department of DefenseAir Force
  5. Fusion of a Real-time Analytical Model with Facility Control Systems

    SBC: STREAMLINE AUTOMATION LLC            Topic: AF09BT16

    AEDC personnel have developed and demonstrated the effectiveness of coupling a control volume model with a wind tunnel control system. The performance of the model was hampered because parameters of the model were assumed to be constant, when they are likely variables. A method for using facility data to determine functional relationships defining these parameters would allow them to vary during ...

    STTR Phase I 2010 Department of DefenseAir Force
  6. Surface plasmon enhanced tunneling diode detection of THz radiation

    SBC: ITN ENERGY SYSTEMS, INC.            Topic: AF09BT33

    This Small Business Technology Transfer Research phase I program will develop a new class of uncooled THz detectors for the 1-10THz band with a novel design using surface plasmon resonant cavities with integrated metal-insulator-metal tunneling diodes as the detecting element. Tunneling diodes provide ultrafast broadband response, potentially into the visible (300THz), but demonstrated performanc ...

    STTR Phase I 2010 Department of DefenseAir Force
  7. Simulation Tool for Modeling Weakly Ionized Plasma

    SBC: TECH-X CORPORATION            Topic: AF09BT10

    We propose to develop a commercial weakly ionized plasma modeling capability based off of Tech-X’s high energy density plasma fluid code TxFluids. The new additions will be able to be used to model hypersonic vehicle physics including shock waves, plasma chemistry and innovative techniques for blackout mitigation and hypersonic vehicle control through the application of electric and/or magnetic ...

    STTR Phase I 2010 Department of DefenseAir Force
  8. Innovative Approaches to Resource Virtualization over Ad-Hoc Wireless Networks

    SBC: Infoscitex Corporation            Topic: N10AT006

    Resource virtualization concepts are in heavy commercial use for optimizing the performance of distributed applications. Resource virtualization allows resources to be allocated and adapted on-the-fly, and enables a wide range of distributed computing, networking, and sensing applications. However, resource virtualization has traditionally been developed for fixed, stable networks, and cannot adeq ...

    STTR Phase I 2010 Department of DefenseNavy
  9. Development of a Computational Method for Prediction of After-Burning Effect

    SBC: BUSA Engineering Consulting            Topic: N10AT002

    This proposal is being submitted in response to the solicitation topic N10A-T002 (Development of a Computational Method for Prediction of After Burning Effect) by BUSA Engineering Consulting (Dr. Jianghui Chao) in collaboration with University of Florida (PI: Prof. S. Balachandar). The overall objective of the proposed effort is to contribute to national defense and security by advancing the state ...

    STTR Phase I 2010 Department of DefenseNavy
  10. Advanced Materials for the Design of Lightweight JP5/JP8/DS2 Fueled Engines for Unmanned Aerial Vehicles (UAVs)

    SBC: Northwest Uld, Inc.            Topic: N10AT001

    Northwest UAV Propulsion Systems proposes using our purpose built heavy fuel engine designed and built in the USA for small unmanned aerial systems in the tier 2 & 3 class. We will be adding a lightweight ceramic material set combined with FEA (Finite Element Analysis) and heavy fuel atomizer (IRAD Project) to create a lightweight engine for a SUAS or STUAS class UAVs. The Ceramic material set is ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government