You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Development of High-Efficiency, High Power Electron Beam Accelerator Technologies

    SBC: Jp Accelerator Works            Topic: N10AT023

    This research investigates the feasibility of improving operational readiness, reliability and availability of high current cryogenic rf linear accelerators using a cryogenic compatible resonant coupling technique to couple all of the accelerator sections together, including any room temperature portion. This technique guarantees a single resonant frequency for the system insuring rapid turn on. T ...

    STTR Phase I 2010 Department of DefenseNavy
  2. Adaptive Fleet Synthetic Scenario Research

    SBC: KAB LABORATORIES INC.            Topic: N10AT044

    Synthetic scenario-based training of Navy personnel in the use of Navy SIGINT/IO systems has helped to reduce training costs, and it has enabled the personnel to be trained in an environment that sufficiently approximates real-world situations that could not otherwise be accomplished within the class room. However, scenario development is highly complex and involves a great deal of human effo ...

    STTR Phase I 2010 Department of DefenseNavy
  3. An Integrated Physics-Based Framework for Detecting Precursor to Damage in Naval Structures

    SBC: Los Gatos Research            Topic: N10AT042

    Aging aircraft commonly suffers from several types of degradation including fatigue cracking and lack of bonding. It is virtually impossible to predict degradation in structural performance or when a component or structure will fail due to the inability to test new material systems under all loading conditions and under all environmental conditions. A material state awareness system using minimali ...

    STTR Phase I 2010 Department of DefenseNavy
  4. A Fast-Response, Electronically Controlled Fuel Injection System for Small Heavy Fuel Engines with Multi-Fuel Capabilities

    SBC: MAINSTREAM ENGINEERING CORP            Topic: N10AT033

    Advances in electronically controlled injection technologies for diesel engines have provided a method to improve medium- to heavy-duty engine performance through increased injection pressures, multiple injections, and injection rate shaping. Although these injection systems have been primarily limited to larger engines, the ability to rapidly and precisely meter fuel for smaller engines is partic ...

    STTR Phase I 2010 Department of DefenseNavy
  5. Innovative Passive Magnetic Thrust Bearings for High-Speed Turbomachinery

    SBC: MAINSTREAM ENGINEERING CORP            Topic: N10AT037

    In miniature gas turbines for UAV applications, traditional bearings exhibit a typical lifetime of only 25 hours due to excessive axial loading. Mainstream proposes to use a passive, permanent magnet thrust bearing to alleviate this problem and increase service life to over 1000 hours. Since this type of bearing is non-contacting, it can operate at very high rotational speeds with minimal heat gen ...

    STTR Phase I 2010 Department of DefenseNavy
  6. Probing Dense Sprays with Gated, Picosecond, Digital Particle Field Holography

    SBC: METROLASER, INCORPORATED            Topic: N10AT027

    This is a proposal to develop a unique, robust, fieldable, gated, picosecond, digital holography system for characterizing dense particle fields under harsh conditions. Many powerful imaging methods have failed to fulfill this requirement because noise from multiple scattering buries the signal needed to acquire a useful image. Solutions to this limitation are very expensive, hard to implement, an ...

    STTR Phase I 2010 Department of DefenseNavy
  7. Wideband Metamaterial Antennas Integrated into Composite Structures

    SBC: NEXTGEN AERONAUTICS, INC.            Topic: N10AT021

    A team led by NextGen Aeronautics Inc., and working with San Diego State University proposes the development of redundant wideband antennas that are embedded in composite armor structures The planned work builds upon the team’s extensive prior experience in conformal load-bearing antenna structures (CLAS), antenna design, and metamaterials. The proposed antenna is a combination of concepts that ...

    STTR Phase I 2010 Department of DefenseNavy
  8. High-rate Manufacturing of Structural-state Sensors (MOSS)

    SBC: NEXTGEN AERONAUTICS, INC.            Topic: N10AT031

    The goal of the proposed research is the development of a high-volume, low-cost manufacturing along with a novel deposition process that enables fabrication of a structural-state electronic system-on film. This hybrid electronic system contains a multifunctional sensor suite that can measure a structure's static (such as deformation, stress and strain) and dynamic state (such as slow or under acce ...

    STTR Phase I 2010 Department of DefenseNavy
  9. High Efficiency Gain Media for Eye-Safer 1.55 µm Ultrafast Fiber Amplifiers

    SBC: Raydiance, Inc.            Topic: N10AT012

    Compelling applications of infrared ultrafast lasers—ranging from ship self defense and aircraft self defense, to medical and micromachining applications—have defined a critical performance point at about one millijoule per pulse from a reliable and robust portable laser system with high average power. Increasing amplifier efficiency is a critical need in order to reach high average powers nee ...

    STTR Phase I 2010 Department of DefenseNavy
  10. Refractory Metal Coating for Electromagnetic Launcher Rails

    SBC: TDA RESEARCH, INC.            Topic: N10AT025

    Electromagnetic launchers or rail guns are a key component of the Navy’s all-electric ship of the future, but they lack the durability required for repeated firings. TDA Research and the University of Nevada, Reno (UNR) are developing a tough, durable and conductive refractory metal coating that will protect the copper alloy conductors (rails) from the extreme heat and wear conditions inside the ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government