You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Novel protocol for Quantum Key Distribution

    SBC: SA PHOTONICS, LLC            Topic: AF09BT21

    Quantum cryptography, and in particular Quantum Key Distribution (QKD) is a secure method to distribute a secret key between two distant authorized partners whose security is based on the laws of physics. Current public key cryptosystems have not been proven to be secure and are based on the computational complexity of evaluating one-way functions. These functions are easily evaluated, but extrem ...

    STTR Phase I 2010 Department of DefenseAir Force
  2. Lasers Based on Gas or Liquid Filled Hollow-Core Photonic Crystal Fibers

    SBC: SA PHOTONICS, LLC            Topic: AF18BT015

    We propose a compact, monolithic, power scalable, hollow core fiber-gas laser emitting in the atmospheric transmission region in the mid-IR. The proposed optically pumped fiber-gas laser system is efficient, has a small footprint as well has a broad spectral coverage in the mid-IR. Due to the unique approach employed, the proposed technology allows generation of mid-IR output with varying pulse re ...

    STTR Phase I 2019 Department of DefenseAir Force
  3. Resilient Directional Mesh Enhanced Tactical Airborne Networks

    SBC: FIRST RF CORPORATION            Topic: AF17BT003

    FIRST RF will lead the Phase II effort and will leverage the system architecture of the MAINLINE system and integrate multifunctional SiGe integrated circuits (ICs) developed by The University of California San Diego under the supervision of Prof. Gabriel Rebeiz. The SiGe devices developed during the Phase II effort will significantly reduce the power requirements of the MAINLINE system allowing f ...

    STTR Phase II 2019 Department of DefenseAir Force
  4. Mission and Information Assurance through Cyber Atomics

    SBC: SECURBORATION, INC.            Topic: AF17BT004

    Cyber Risk Assessments for Threatened Environments (CRATE) is a system that produces actionable, mission-level alerts when anomalous behaviors indicative of cyber-attack are discovered within deployed mission-critical cyber-systems. CRATE is particularly relevant to deployment scenarios involving third-party infrastructure, such as deployment to a Platform as a Service (PaaS) provider or other clo ...

    STTR Phase II 2019 Department of DefenseAir Force
  5. Robust Model for Behavior of Complex Materials during Spin Testing

    SBC: SYMPLECTIC ENGINEERING CORP            Topic: AF08T013

    The objective of this project is to develop a practical finite element-based simulation of spin-pit tests of disks. The performance of disks in spin-pit tests critically depends on localized effects, such as residual stresses, dislocations, and microstructure gradients. Therefore, a two-scale modeling approach is adopted. At the global-scale, the disk is represented by means of finite elements wit ...

    STTR Phase II 2010 Department of DefenseAir Force
  6. Computation of Structural Energetic Materials Under Shock Loading: a Meso-Scale Framework

    SBC: STREAMLINE NUMERICS INC            Topic: AF16AT23

    Structural energetic materials or multifunctional energetic materials offer the ability to combine the high energy release rates of traditionalhigh explosives with structural strength. When successfully formulated therefore they can lead to light-weight, high-performance and hithertoinaccessible designs of munitions. The key feature of structural energetic materials (SEMs), perhaps even more so th ...

    STTR Phase I 2016 Department of DefenseAir Force
  7. Multiphysics Modeling of Dynamic Combustion Processes Using Pareto-Efficient Combustion Framework

    SBC: STREAMLINE NUMERICS INC            Topic: AF18BT010

    The objective is to develop zonal multi-physics capability for turbulent combustion simulations. The foundation of the proposed work is a novel Pareto-Efficient Combustion (PEC) framework for fidelity-adaptive combustion modeling. The PEC model utilizes a combustion submodel assignment, combining the low-cost flamelet-based models with the more expensive finite rate chemistry models where necessar ...

    STTR Phase I 2019 Department of DefenseAir Force
  8. Innovative CFD Algorithm, Libraries & Python Frameworks for Hybrid-GPU Computing Architectures

    SBC: JMSI, INC            Topic: AF09BT18

    The need for faster highly resolved solutions coupled with the advent of General Purpose Graphics Processing Unit (GPGPU) architectures and the development of GPGPU algorithms at the University of California, Davis present an opportunity that JMSI Inc. proposes to leverage by developing algorithmic and software solutions for GPGPUs in “Innovative CFD Algorithms, Libraries & Python Frameworks for ...

    STTR Phase I 2010 Department of DefenseAir Force
  9. Intelligent In-Situ Feature Detection, Extraction, Tracking and Visualization For Turbulent Flow Simulations

    SBC: JMSI, INC            Topic: AF08T017

    The Phase II STTR project proposed herein presents a new methodology that Detect, Ex-tract, Track and Display features in a CFD solution. BENEFIT: It is projected that his work will impact the Air Force’s procurement methods through improved analysis capabilities in: 1. Aerostructures analysis 2. Weapons bay and structural acoustics analysis 4. Active flow control analysis 5. High lift syste ...

    STTR Phase II 2010 Department of DefenseAir Force
  10. Pitch Reducing Optical Fiber Arrays Enabling Multiplexing, Shape Sensingand Network Transitioning for SDM

    SBC: CHIRAL PHOTONICS INC            Topic: AF16AT30

    Space-Division-Multiplexing (SDM) provides a path towards increasing the capacity of fiber optic links.Chiral Photonics has developed proprietary vanishing core technology, which can serves as the basis for multiplexing devices for SDM, called Pi...

    STTR Phase I 2016 Department of DefenseAir Force
US Flag An Official Website of the United States Government