You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Simulation Tool for Modeling Weakly Ionized Plasma

    SBC: TECH-X CORPORATION            Topic: AF09BT10

    We propose to develop a commercial weakly ionized plasma modeling capability based off of Tech-X’s high energy density plasma fluid code TxFluids. The new additions will be able to be used to model hypersonic vehicle physics including shock waves, plasma chemistry and innovative techniques for blackout mitigation and hypersonic vehicle control through the application of electric and/or magnetic ...

    STTR Phase I 2010 Department of DefenseAir Force
  2. Innovative Approaches to Resource Virtualization over Ad-Hoc Wireless Networks

    SBC: Infoscitex Corporation            Topic: N10AT006

    Resource virtualization concepts are in heavy commercial use for optimizing the performance of distributed applications. Resource virtualization allows resources to be allocated and adapted on-the-fly, and enables a wide range of distributed computing, networking, and sensing applications. However, resource virtualization has traditionally been developed for fixed, stable networks, and cannot adeq ...

    STTR Phase I 2010 Department of DefenseNavy
  3. Development of a Computational Method for Prediction of After-Burning Effect

    SBC: BUSA Engineering Consulting            Topic: N10AT002

    This proposal is being submitted in response to the solicitation topic N10A-T002 (Development of a Computational Method for Prediction of After Burning Effect) by BUSA Engineering Consulting (Dr. Jianghui Chao) in collaboration with University of Florida (PI: Prof. S. Balachandar). The overall objective of the proposed effort is to contribute to national defense and security by advancing the state ...

    STTR Phase I 2010 Department of DefenseNavy
  4. Advanced Materials for the Design of Lightweight JP5/JP8/DS2 Fueled Engines for Unmanned Aerial Vehicles (UAVs)

    SBC: Northwest Uld, Inc.            Topic: N10AT001

    Northwest UAV Propulsion Systems proposes using our purpose built heavy fuel engine designed and built in the USA for small unmanned aerial systems in the tier 2 & 3 class. We will be adding a lightweight ceramic material set combined with FEA (Finite Element Analysis) and heavy fuel atomizer (IRAD Project) to create a lightweight engine for a SUAS or STUAS class UAVs. The Ceramic material set is ...

    STTR Phase I 2010 Department of DefenseNavy
  5. Uncooled Photomechanical Terahertz Imagers

    SBC: AGILTRON, INC.            Topic: AF09BT33

    Agiltron and the University of Massachusetts Lowell will develop a transformational terahertz (THz) imager based on Agiltron’s established optical readout photomechanical imaging technology. The photomechanical imager contains a MEMS-based focal plane array that transduces THz radiation into a visible signal for capture by a high-performance CCD imager. By leveraging the advances made in the fie ...

    STTR Phase I 2010 Department of DefenseAir Force
  6. Multifunction Substrates for Laser Desorption Ionization

    SBC: LEXITEK INC            Topic: AF09BT34

    Lexitek and U. Mass Lowell propose to develop novel laser nanostructured substrates for laser desorption ionization (LDI) that enables mass spectrometry (MS) without an interfering chemical matrix. Lexitek is developing these patented plasmonic devices for molecular sensing using surface enhanced detection techniques. Using a technique invented by U. Mass researchers, the devices are fabricated in ...

    STTR Phase I 2010 Department of DefenseAir Force
  7. Multifunctional Nanocomposite Structures Via Layer-by-Layer Assembly Process

    SBC: Nanolab, Inc            Topic: AF09BT36

    The goal of the proposed STTR is to demonstrate the feasibility of using a rapid, automated spray layer by layer process, developed by the Hammond group in MIT’s Department of Chemical Engineering, to create polyelectrolyte/carbon nanotube composites for Air Force applications at deposition rates superior to existing layer by layer techniques. This proposal will be led by NanoLab, Inc., a compa ...

    STTR Phase I 2010 Department of DefenseAir Force
  8. Ultrafast Hybrid Active Materials and Devices for Compact RF Photonics

    SBC: Photonic Systems, Inc.            Topic: AF09BT25

    In this project, we propose to use the radiation-assisted poling technique to enhance the electro-optic coefficient of a polymer that we will integrate within a silicon nano-slot waveguide. The electro-optic coefficient in the slot is expected to improve to nearly its optimal value that it exhibits in bulk material. To avoid a free carrier transit time limit and reduce the radio-frequency propag ...

    STTR Phase I 2010 Department of DefenseAir Force
  9. Innovative Combat Simulation to Craft Tomorrow’s UAV Operational Doctrine

    SBC: John Tiller Software, Inc            Topic: AF09BT31

    This proposal is for the use of state-of-the-art computer wargames to be used in the research on the impact and optimal use of unmanned aerial vehicles (UAVs) in realistic combat scenarios. High fidelity, historically calibrated wargames ranging from sub-tactical ground-centric game engines through operational, strategic, air campaign, and naval-centric game engines will be used to address the fu ...

    STTR Phase I 2010 Department of DefenseAir Force
  10. Enhanced Carbon Nanotube Ultracapacitors

    SBC: Amtec Corporation            Topic: AF09BT05

    The mission of this proposed research is to develop ultracapacitors (also known as electrochemical or supercapacitors) to address an array of military applications. These applications include pulsed power for directed-energy and kinetic-energy weapons, sensors, and power supplies and control systems for aircraft and spacecraft. The proposed innovation employs carbon nanotubes (CNTs) coated with p ...

    STTR Phase I 2010 Department of DefenseAir Force
US Flag An Official Website of the United States Government