You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Computation of Structural Energetic Materials Under Shock Loading: a Meso-Scale Framework

    SBC: STREAMLINE NUMERICS, INC.            Topic: AF16AT23

    Structural energetic materials or multifunctional energetic materials offer the ability to combine the high energy release rates of traditionalhigh explosives with structural strength. When successfully formulated therefore they can lead to light-weight, high-performance and hithertoinaccessible designs of munitions. The key feature of structural energetic materials (SEMs), perhaps even more so th ...

    STTR Phase I 2016 Department of DefenseAir Force
  2. Meso-scale Framework for Simulating the Response of Structural Reactive Materials to Shock Loading

    SBC: STREAMLINE NUMERICS, INC.            Topic: AF16AT23

    Structural reactive materials (SRMs) or multifunctional energetic materials offer the ability to combine the high energy release rates of traditional high explosives with structural strength.When successfully formulated they can lead to light-weight, high-performance and hitherto inaccessible designs of munitions. The key feature of structural energetic materials (SEMs), perhaps even more so than ...

    STTR Phase II 2018 Department of DefenseAir Force
  3. Multiphysics Modeling of Dynamic Combustion Processes Using Pareto-Efficient Combustion Framework

    SBC: STREAMLINE NUMERICS, INC.            Topic: AF18BT010

    The objective is to develop zonal multi-physics capability for turbulent combustion simulations. The foundation of the proposed work is a novel Pareto-Efficient Combustion (PEC) framework for fidelity-adaptive combustion modeling. The PEC model utilizes a combustion submodel assignment, combining the low-cost flamelet-based models with the more expensive finite rate chemistry models where necessar ...

    STTR Phase I 2019 Department of DefenseAir Force
  4. Scalable Adaptive Fiber-Array Elements (SAFARE) for Directed Energy Phased Arrays

    SBC: MV INNOVATIVE TECHNOLOGIES, LLC            Topic: AF12BT13

    ABSTRACT: To address the Air Force need for an adaptive optics system using a fiber laser array as the spatial phase correction system within the subaperature of an array of discrete telescopes, Optonicus and The University of Dayton propose the development of a new Scalable Adaptive Fiber-Array Elements (SAFARE) system. The integration of new fiber-array architectures with novel imaging and ada ...

    STTR Phase I 2013 Department of DefenseAir Force
  5. Carbon Nanotube FET Modeling and RF Circuit Simulation

    SBC: ELECTRONICS OF THE FUTURE, INC.            Topic: AF18BT006

    The project will develop and validate a geometry scalable CNTFET compact model for HF circuit design and extract the model parameters from the measured characteristics of the fabricated devices. The ballistic and quasi-ballistic transport, quantum and parasitic effects will be accounted for the predicted performance will be compared to 130 nm RF Si-CMOS to determine the conditions for breaking eve ...

    STTR Phase I 2019 Department of DefenseAir Force
  6. Terahertz cyber security testing using artificial intelligence (FA-002)

    SBC: ELECTRONICS OF THE FUTURE, INC.            Topic: AF19BT001

    The focus of this proposal is FA-002 - artificial intelligence (AI), which will be used for the hardware cyber security. AI will link the THz and sub-THz responses at the pins to the defects and deviations from design of the integrated circuits under test. An increasing complexity of digital and mixed-signal systems makes establishing the authenticity of a chip to be a key problem. New rapid, inex ...

    STTR Phase I 2019 Department of DefenseAir Force
  7. Active Control of a Scramjet Engine

    SBC: AHMIC AEROSPACE LLC            Topic: AF15AT19

    Scramjet engines are designed to operate across a wide Mach number range and typically incorporate isolator sections to provide sufficient back-pressure margin and prevent unstart. As military requirements become increasingly demanding, an active, closed-loop control system is necessary to maintain engine stability and power output. During Phase I, key components of a scramjet control system were ...

    STTR Phase II 2016 Department of DefenseAir Force
  8. Fast Response Heat Flux Sensors and Efficient Data Reduction Methodology for Hypersonic Wind Tunnels

    SBC: AHMIC AEROSPACE LLC            Topic: AF17AT001

    Accurate knowledge of heat flux is critical in assessing the design, performance, and survivability of hypersonic flight vehicles. Despite decades of research and testing, much is still unknown regarding hypersonic instabilities and transition mechanisms that define the state of the boundary layer. While the existence of these features is known, the ability to accurately measure them remains a cha ...

    STTR Phase II 2019 Department of DefenseAir Force
  9. Massively Parallel Micromachining with Ultrafast Lasers

    SBC: KAPTEYN-MURNANE LABORATORIES, INC            Topic: AF08T029

    We are proposing to develop a highly parallel, rapid prototyping system for the manufacture of microfluidic devices. In this phase II proposal we will build a complete system for making such devices for continued research on fieldable microfluidic systems for use in the military, and in hospitals. The project will also allow manufacturing in widely different materials, and structures, without an ...

    STTR Phase II 2010 Department of DefenseAir Force
  10. Prototype for Rapid Reconstitution for Ground-based Space Situational Awareness Capability for Near-geosynchronous Objects

    SBC: DFM ENGINEERING, INC.            Topic: AF16AT05

    We propose to research the feasibility of rapidly reconstituting a ground based sensor system for space situational awareness with a large fraction of the capability of the GEODSS sensor system. This system can be deployed quickly to a GEODSS site where ...

    STTR Phase I 2016 Department of DefenseAir Force
US Flag An Official Website of the United States Government