You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Characterization of Diffusive Noise Fields Using Ambient Noise Interferometry, Spatial Gradients and Acoustic Bright Spots

    SBC: Rocky Mountain Geophysics, Llc            Topic: N10AT004

    We propose to conduct a feasibility study for utilizing broadband sampling of the diffusive noise field in a dynamic environment. In ambient noise studies, the ability to resolve a wavefield is proportional to its time-bandwidth (TB) product. In a dynamic environment such as in the atmosphere or ocean, the nature of the impinging wave field is changing rapidly so that only short time segments can ...

    STTR Phase I 2010 Department of DefenseNavy
  2. Development of a Computational Method for Prediction of After-Burning Effect

    SBC: Strategic Insight, Ltd.            Topic: N10AT002

    The research objective is to develop a fully functional computational method for prediction of the after-burning effect of different fuels in a wide range of temperature, pressure, and turbulence regimes. Achievement of the objective requires understanding and modeling of key phenomena including (a) post-detonation response of the fuels, (b) near-field coupling of detonation products with particul ...

    STTR Phase I 2010 Department of DefenseNavy
  3. Ambient Noise Interferometry for Passive Characterization of Dynamic Environments

    SBC: ZEL TECHNOLOGIES, L.L.C.            Topic: N10AT004

    Non-invasive, stealthy nature of passive remote sensing combined with its low cost make passive techniques a promising supplement or replacement of traditional active remote sensing techniques. Coherent processing of diffuse wave fields has a proven potential for remote sensing of stationary environments. The proposed research extends noise interferometry to characterization of dynamic environment ...

    STTR Phase I 2010 Department of DefenseNavy
  4. Development of a Computational Method for Prediction of After-Burning Effect

    SBC: BUSA Engineering Consulting            Topic: N10AT002

    This proposal is being submitted in response to the solicitation topic N10A-T002 (Development of a Computational Method for Prediction of After Burning Effect) by BUSA Engineering Consulting (Dr. Jianghui Chao) in collaboration with University of Florida (PI: Prof. S. Balachandar). The overall objective of the proposed effort is to contribute to national defense and security by advancing the state ...

    STTR Phase I 2010 Department of DefenseNavy
  5. Advanced Materials for the Design of Lightweight JP5/JP8/DS2 Fueled Engines for Unmanned Aerial Vehicles (UAVs)

    SBC: Northwest Uld, Inc.            Topic: N10AT001

    Northwest UAV Propulsion Systems proposes using our purpose built heavy fuel engine designed and built in the USA for small unmanned aerial systems in the tier 2 & 3 class. We will be adding a lightweight ceramic material set combined with FEA (Finite Element Analysis) and heavy fuel atomizer (IRAD Project) to create a lightweight engine for a SUAS or STUAS class UAVs. The Ceramic material set is ...

    STTR Phase I 2010 Department of DefenseNavy
  6. Analysis and Modeling of Foreign Object Damage (FOD) in Ceramic Matrix Composites (CMCs)

    SBC: ALPHASTAR TECHNOLOGY SOLUTIONS LLC            Topic: N10AT010

    A significant barrier to the insertion of ceramic matrix composite (CMC) materials into advanced aircraft engines is their inherent lack of toughness under foreign object Damage (FOD) as well as post FOD. Our team will develop and demonstrate a physics-based model for FOD/post FOD in CMC’s. The model will incorporate physical mechanisms associated with impact for two different CMC systems: a) ma ...

    STTR Phase I 2010 Department of DefenseNavy
  7. Development of Surface Reaction Mechanism for C-SiC-SiO2-Rubber Composite Oxidation in Extreme Oxidizing Condition

    SBC: CFD RESEARCH CORPORATION            Topic: N10AT005

    The purpose of this STTR is to develop comprehensive detailed kinetics for oxidation of C-SiC-SiO2-rubber in extreme oxidizing environment. This material is used as a coating on the outer surface of Navy weapon systems. In order to predict the fate of this material under extreme conditions and mitigate the degradation of the coating, a comprehensive oxidation mechanism is required. In Phase I, CFD ...

    STTR Phase I 2010 Department of DefenseNavy
  8. Dynamic Physical/Data-Driven Models for System-Level Prognostics and Health Management

    SBC: GLOBAL STRATEGIC SOLUTIONS LLC            Topic: N10AT009

    Prognostics and health management (PHM) systems are critical for detecting impending faults and enabling a proactive decision process for maintenance or replacement of avionics systems before actual failures occur. A PHM system is essential to enhancing aircraft systems reliability and maintaining a high level of mission readiness and affordability. Current PHM advancements are focused on aircraft ...

    STTR Phase I 2010 Department of DefenseNavy
  9. Biojet Fuels from Nonedible Bio-oils and Cellulosic Biomass

    SBC: ENERGIA TECHNOLOGIES, INC.            Topic: N09T034

    The proposed program addresses the emerging needs for the Navy to have cost effective alternative liquid transportation biofuels. The main objectives are to produce bio-jet and bio-diesel fuels from cellulosic biomass and nonedible bio-oils and demonstrate that they have cost structure and product quality comparable to petroleum based fuels. Novel concepts in processing, reactor design and catalys ...

    STTR Phase II 2010 Department of DefenseNavy
  10. Graphene Production Tool

    SBC: STRUCTURED MATERIALS INDUSTRIES, INC.            Topic: AF08BT10

    In this STTR program, Structured Materials Industries, Inc. (SMI) and Cornell University are developing a flexible graphene film deposition system, for both research and production applications. In Phase I, our team demonstrated technical feasibility of scaling existing graphene process technology at Cornell to large wafer sizes. We demonstrated high quality graphene films by both silicon sublim ...

    STTR Phase II 2010 Department of DefenseAir Force
US Flag An Official Website of the United States Government