You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Data Driven Intent Recognition Framework

    SBC: OTHER LAB, INC.            Topic: NSF13599

    A critical aspect of exoskeleton control that has to date introduced a performance limitation is the ability of the exoskeleton to recognize the intent of the operator so it can apply assistance to their desired motion. This intent recognition effort is typically solved using ad-hoc methods where subject matter experts make design decisions and tune transitions to identify intended maneuvers as re ...

    STTR Phase II 2016 Department of DefenseSpecial Operations Command
  2. Conductive Transmissive Coating for Enhanced-Absorption Thin Film Solar Cells

    SBC: AGILTRON, INC.            Topic: A15AT016

    Thin-film, lightweight, large-area flexible inorganic solar cells have shown promise to meet the militarys remote power needs on the battlefield. However, thin film solar cells normally have inferior conversion efficiencies due to limited absorption of sunlight by the thin active layer. Various approaches have been investigated to improve conversion efficiencies of thin film solar cells. Among the ...

    STTR Phase I 2016 Department of DefenseArmy
  3. Compressive Sensing Flash IR 3D Imager

    SBC: PHYSICAL SCIENCES INC.            Topic: A15AT007

    Physical Sciences Inc. in collaboration with Colorado State University proposes to develop a compact infrared flash 3D imaging sensor employing compressive sensing (CS) approaches. The CS 3D sensor offers a combination of high range resolution (10 cm), high point cloud density (6464 format), and fast 3D image frame rates (10 Hz) in a low cost, compact form factor employing commercial off the shelf ...

    STTR Phase II 2016 Department of DefenseArmy
  4. Big Open Source Social Science (BOSSS)

    SBC: BOSTON FUSION CORP            Topic: A16AT013

    Boston Fusion Corp. and Arizona State University propose to research and develop Big Open Source Social Science (BOSSS). In BOSSS, we will create a unified approach that combines social and computer science methodologies to collect and interpret big open source data, yielding meaningful focused analysis of selected populations. We will develop a system framework that adaptively learns social behav ...

    STTR Phase I 2016 Department of DefenseArmy
  5. An Ultra-Compact Low-Power THz Radio SoC with On-Chip Antenna and Energy Harvesting

    SBC: Digital Analog Integration, Inc.            Topic: A15AT005

    There is an unmet demand for ultra-low-power, ultra-compact and low-cost radios to address emerging sensing and communication needs for military and commercial applications such as IoT/IoE. To overcome the limitations in existing bulky and power hungry radios, we propose a disruptive solution by integration of a nano-scaled THz transceiver, on-chip antenna, and energy harvesting circuits in a form ...

    STTR Phase II 2016 Department of DefenseArmy
  6. Acoustically/Vibrationally Enhanced High Frequency Electromagnetic Detector for Buried Landmines

    SBC: AKELA INC            Topic: A16AT004

    Laboratory investigations have suggested that acoustically or vibrationally inducing motion in buried targets can aid in improving target detectability through a characteristic response related to differential target motion. This gain is realized by adding an additional degree of freedom, modulation due to motion in the GPR return signal, to use as a discriminating feature. The AKELA team is propo ...

    STTR Phase I 2016 Department of DefenseArmy
  7. Acoustically/Vibrationally Enhanced High Frequency Electromagnetic Detector for Buried Landmines

    SBC: White River Technologies Inc            Topic: A16AT004

    White River Technologies, Inc. (WRT) and University of Vermont (UVM) present this proposal, "Acoustically/Vibrationally Enhanced High Frequency Electromagnetic Detector for Buried Landmines". Among the primary gaps in our current landmine detection technology base is the ability to detect a wide range of buried explosive hazards including emerging low-metal mines and improvised explosive devices ...

    STTR Phase I 2016 Department of DefenseArmy
US Flag An Official Website of the United States Government