You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Ultra-Coherent Semiconductor Laser Technology

    SBC: TELARIS INC            Topic: A14AT005

    Spontaneous emission is a quantum mechanical process that represents the main source of phase noise in state-of-the-art semiconductor lasers, limiting their coherence, and their suitability for high-speed communication and sensing applications. This proposal aims to develop ultra-high coherence semiconductor lasers on the Silicon/III-V platform with a quantum linewidth of

    STTR Phase II 2015 Department of DefenseArmy
  2. Pathogen Specific Antimicrobial Coatings For Fabrics

    SBC: GINER INC            Topic: A14AT012

    Antimicrobial treatment of military textile systems is intended to provide enhanced protection to the Warfighter in the field by preventing colonization of harmful bacteria that cause problems such as odor, dermatitis, impetigo, cellulitis, and other skin irritations. Current treatments can impart antimicrobial functionality to textiles; however, they all possess broad-spectrum antimicrobial activ ...

    STTR Phase II 2015 Department of DefenseArmy
  3. Powerful Source of Collimated Coherent Infrared Radiation with Pulse Duration Fewer than Ten Cycles

    SBC: N.P. PHOTONICS, INC.            Topic: A14AT006

    Few-cycle mid-infrared lasers are in high demand for a variety of practical applications including remote sensing of chemical and biological species. NP Photonics and the University of Arizona propose to develop a wavelength tunable and power-scalable optical parametric laser system covering 8-10 micron and capable of producing collimated few-cycle pulses with pulse energy > 100 microjoules. A ful ...

    STTR Phase II 2015 Department of DefenseArmy
  4. Information Salience

    SBC: DISCERNING TECHNOLOGIES, LLC            Topic: OSD11TD1

    Empirical-based mathematical framework and computer algorithms, for representing human perception and cognition processes and limitations, which influence the recognition of salient information about rapidly changing events.

    STTR Phase II 2015 Department of DefenseOffice of the Secretary of Defense
  5. Innovative concept for detection and identification of biological toxins

    SBC: Zeteo Tech, Inc.            Topic: CBD14101

    Zeteo Tech in strong and enduring partnership with University of Maryland will develop a toxin detection and identification system for field use. The system will incorporate a low cost, disposable device for toxin capture and MALDI sample preparation. The output of the disposable device will be input assays for enhanced detection and identification.

    STTR Phase II 2015 Department of DefenseArmy
  6. High Gain, High Power PCSS with Integrated Monolithic Optical Trigger

    SBC: NESS ENGINEERING, INC.            Topic: A14AT004

    The objective of this Phase II proposal is to continue the development of a Photoconductive Semiconductor Switch (PCSS) with an integrated optical trigger that can switch at least 30 kV, 1 kA, 20 ns pulses with jitter 108 shots. Ness Engineering, Inc. (NEI) and Texas Tech University (TTU) propose to utilize wide bandgap materials to demonstrate lock-on switching and allow much less optical trigger ...

    STTR Phase II 2016 Department of DefenseArmy
  7. Parallel Two-Electron Reduced Density Matrix Based Electronic Structure Software for Highly Correlated Molecules and Materials

    SBC: Q-CHEM INC            Topic: A14AT013

    Variational two-electron reduced-density-matrix (v2RDM) methods can provide a reference-independent description of the electronic structure of many-electron systems that naturally captures multireference correlation effects. These methods offer one of the few possible routes to performing the large-active-space computations that are necessary for the qualitative description of strongly-correlated ...

    STTR Phase II 2016 Department of DefenseArmy
  8. Improved Flotation Separation of Rare Earth Ore

    SBC: ATS-MER, LLC            Topic: OSD12T01

    A critical step in the extraction of elements from ore, especially rare earth elements that are found in complex minerals, is separation. Froth flotation is a highly versatile method for physically separating particles based on differences in the ability of air bubbles to selectively adhere to specific mineral surfaces in a mineral/water slurry. The particles with attached air bubbles are then ca ...

    STTR Phase II 2015 Department of DefenseOffice of the Secretary of Defense
  9. Electronically Tunable High-Power Infrared Lasers for Standoff Detection Applications

    SBC: Pranalytica, Inc.            Topic: A14AT015

    In response to the Army STTR Topic A14A-T015 solicitation for tunable high-power LWIR lasers for standoff detection applications, Pranalytica proposed to develop a compact, rugged and highly reliable wavelength tunable quantum cascade laser (QCL) module delivering over 5W of peak power and over 0.5W of average power in the spectral region spanning from 7 to 11m. The proposed approach is based on a ...

    STTR Phase II 2016 Department of DefenseArmy
  10. Vacuum Integrated System for Ion Trapping

    SBC: COLDQUANTA, INC.            Topic: A15AT009

    We propose to develop a compact, integrated ion trap quantum system for quantum sensor, timekeeping, and computing applications. To do so, we leverage ColdQuantas expertise in miniature ultra-high vacuum (UHV) and atom chip technology and Duke Universitys expertise in microfabricated surface ion traps and quantum information processing experiments. We will produce a manufacturable, commercializa ...

    STTR Phase II 2016 Department of DefenseArmy
US Flag An Official Website of the United States Government