You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Higher Order Mesh Generation for Simulation of Complex Systems

    SBC: HYPERCOMP INC            Topic: AF14AT07

    In this program, HyPerComp and University of Michigan have teamedtogether to develop a high-order grid generator for Euler and viscousmeshes. The grid generator is based on HyPerComps successful generalpurpose CAD2Mesh software and is being integrated with HyPerCompsHDphysics and U. Michigans XFlow DG high-order solvers. High-order gridgeneration methods are being implemented to accurately capture ...

    STTR Phase II 2016 Department of DefenseAir Force
  2. High Fidelity Rotorcraft Towing Modeling and Simulation with Towed Magnetic Anomaly Detection System

    SBC: ADVANCED ROTORCRAFT TECHNOLOGY, INC.            Topic: N15AT009

    Towing of a Magnetic Anomaly Detection (MAD) system is an important aspect of rotorcraftmaritime operation. The oscillatory rotorcraft combined with the long and flexible towingcable, the low mass ratio of the towed body to the towing aircraft, and the rotor wake effecton the towed body presents a challenge for integration of a modern MAD system withrotorcraft platform. The research objective is t ...

    STTR Phase II 2016 Department of DefenseNavy
  3. High Gain, High Power PCSS with Integrated Monolithic Optical Trigger

    SBC: Eureka Aerospace            Topic: A14AT004

    This proposal addresses the problem of PCSS/laser trigger integration using a single monolithic laser diode array, thus simplifying the entire optical delivery network necessary for efficient operation of PCSSs. The proposal constitutes a logical continuation of Phase I effort where the main focus was on the detailed design of the PCSS/laser diode array (LDA) integrated architecture. In Phase II ...

    STTR Phase II 2016 Department of DefenseArmy
  4. High Gain, High Power PCSS with Integrated Monolithic Optical Trigger

    SBC: NESS ENGINEERING, INC.            Topic: A14AT004

    The objective of this Phase II proposal is to continue the development of a Photoconductive Semiconductor Switch (PCSS) with an integrated optical trigger that can switch at least 30 kV, 1 kA, 20 ns pulses with jitter 108 shots. Ness Engineering, Inc. (NEI) and Texas Tech University (TTU) propose to utilize wide bandgap materials to demonstrate lock-on switching and allow much less optical trigger ...

    STTR Phase II 2016 Department of DefenseArmy
  5. Highly Repetitive Power Modulators for Mobile Applications

    SBC: Transient Plasma Systems, Inc.            Topic: AF13AT07

    Experimental data from a number of DoD supported research programs have indicated that electrical systems capable of producing highly repetitive bursts of high voltage, fast risetime pulses are a critical enabling technology for applications tied to nonequilibrium physical processes, such as combustion, boundary layer flow, and the generation of high power EM waves. Recognizing the important role ...

    STTR Phase II 2015 Department of DefenseAir Force
  6. High Quality/Low Dimension Data for Sensor Integration

    SBC: ANDRO COMPUTATIONAL SOLUTIONS LLC            Topic: AF15AT16

    Novel algorithms were developed for ecient multi-sensor fusion of correlated high-dimensional data to support target detection. In our compressive sensing framework, high-dimensional data is compressed using low dimensional random projection matrices. When the high-dimensional data exhibits low-dimensional structures, this scheme is capable of capturing all the significant informative with fewer r ...

    STTR Phase II 2016 Department of DefenseAir Force
  7. High-Sensitivity Monolithic Silicon CMOS APD and ROIC

    SBC: FREEDOM PHOTONICS LLC            Topic: AF14AT13

    This work will focus on the development of monolithic SWIR focal plane array technologies using CMOS or CMOS compatible fabrication technology. This will be realized on a Silicon substrate and incorporate APD+TIA arrays and be scalable to Megapixel arrays and coherent receiver operation for capture of the full optical wavefront vector information.

    STTR Phase II 2016 Department of DefenseAir Force
  8. Impact of Hypersonic Flight Environment on Electro-Optic/Infrared (EO/IR) Sensors

    SBC: Analysis and Applications Associates, Inc.            Topic: AF15AT40

    EO/IR sensors can provide high spatial resolution images using multiple frequency bands ranging from the visible to mid-wave IR. EO/IR sensors have been very successful for terrain imaging from subsonic aircraft and from satellites. Imaging using these platforms has been studied extensively. EO/IR sensors can provide high spatial resolution images using multiple frequency bands ranging from the v ...

    STTR Phase II 2016 Department of DefenseAir Force
  9. Information Salience

    SBC: DISCERNING TECHNOLOGIES, LLC            Topic: OSD11TD1

    Empirical-based mathematical framework and computer algorithms, for representing human perception and cognition processes and limitations, which influence the recognition of salient information about rapidly changing events.

    STTR Phase II 2015 Department of DefenseOffice of the Secretary of Defense
  10. In Situ Inspection of Additive Manufactured Metallic Parts Using Laser Ultrasonics

    SBC: INTELLIGENT OPTICAL SYSTEMS, INC.            Topic: N15AT008

    Additive manufacturing (AM) is a very promising technique for rapid, low-cost production of aircraft parts directly from a CAD file. AM is especially appealing for complex parts that would be costly or impossible to fabricate by machining or casting. At the current time there are no reliable, cost-effective techniques to qualify the finished parts. Several government studies have noted this gap an ...

    STTR Phase II 2016 Department of DefenseNavy
US Flag An Official Website of the United States Government