You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Hybrid DNN-based Transfer Learning and CNN-based Supervised Learning for Object Recognition in Multi-modal Infrared Imagery

    SBC: TOYON RESEARCH CORPORATION            Topic: 1

    On this effort Toyon Research Corp. and The Pennsylvania State University are developing deep learning-based algorithms for object recognition and new class discovery in look-down infrared (IR) imagery. Our approach involves the development of a hybrid classifier that exploits both transfer learning and semi-supervised paradigms in order to maintain good generalization accuracy, especially when li ...

    STTR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency
  2. Inhibiting Prolyl Hydroxylase to Mimic Natural Acclimatization to High Altitude to Improve Warfighter Performance at High Altitude

    SBC: Research Logistics Company            Topic: SOCOM17C001

    Acclimatization is the long-term adjustment that humans experience when exposed for weeks or months to high altitude. Acclimatization is important in this context because a warfighter who is acclimatized to high altitude is immune to high altitude illness, has superior work capacity, and has cognitive function approaching that found at sea level. In other words, the acclimatized warfighter is opti ...

    STTR Phase I 2018 Department of DefenseSpecial Operations Command
  3. System for Nighttime and Low-Light Face Recognition

    SBC: Systems & Technology Research LLC            Topic: SOCOM18A001

    Face recognition performance using deep learning has seen dramatic improvements in recent years. This improvement has been fueled in part by the curation of large labeled training datasets with millions of images of hundreds of thousands of subjects.This results in effective generalization for matching over pose, illumination, expression and age variation, however these datasets have traditionally ...

    STTR Phase I 2018 Department of DefenseSpecial Operations Command
  4. System for Nighttime and Low-Light Face Recognition

    SBC: MUKH Technologies LLC            Topic: SOCOM18A001

    Recognizing faces in low-light and nighttime conditions is a challenging problem due to the noisy and poor quality nature of the images.Thermal imaging is often used to obtain facial biometric in such conditions. Thermal face images, while having a strong signature at nighttime, are not typically maintained in biometric-enabled watch lists and so must be compared with visible-light face images to ...

    STTR Phase I 2018 Department of DefenseSpecial Operations Command
  5. Circulating Diagnostic Markers of Infectious Disease

    SBC: PATHOVACS INCORPORATED            Topic: CBD18A001

    The focus of this STTR phase I component is on proof-of-concept studies demonstrating applicability of technical approaches for identificationof circulatory diagnostic markers for infectious disease. Therefore, the primary objective of this project is to determine feasibility of one suchtechnical approach called Proteomics-based Expression Library Screening (PELS), for identification of pathogen-d ...

    STTR Phase I 2018 Department of DefenseOffice for Chemical and Biological Defense
  6. Marburg Virus Prophylactic Medical Countermeasure

    SBC: MAPP BIOPHARMACEUTICAL, INC.            Topic: CBD18A002

    There are currently no vaccines or therapeutics available for Marburg Virus Disease (MVD). Given the specter of weaponization and the terriblemorbidity and high mortality rate of MVD, this represents a critical threat to the operational readiness of the Warfighter. While traditionalvaccines have proven to be a huge contribution to public health, they do have some limitations especially in the cont ...

    STTR Phase I 2018 Department of DefenseOffice for Chemical and Biological Defense
  7. Development of Advanced Military Prosthetic Shoulder System

    SBC: Sarcos Group LC            Topic: A05161

    A new dual pump hydraulic supply designed to enable energetically autonomous exoskeleton robots will be developed, tested and demonstrated. This new hydraulic supply will be integrated with a high performance hydraulically actuated full body exoskeleton robot and used to test and demonstrate the overall performances of such systems. New control policies that include: (i) an assist mode, where the ...

    STTR Phase II 2017 Department of DefenseSpecial Operations Command
  8. Data Driven Intent Recognition Framework

    SBC: OTHER LAB, INC.            Topic: NSF13599

    A critical aspect of exoskeleton control that has to date introduced a performance limitation is the ability of the exoskeleton to recognize the intent of the operator so it can apply assistance to their desired motion. This intent recognition effort is typically solved using ad-hoc methods where subject matter experts make design decisions and tune transitions to identify intended maneuvers as re ...

    STTR Phase II 2016 Department of DefenseSpecial Operations Command
  9. MK III Upper Extremity Exoskeleton

    SBC: Ekso Bionics Inc            Topic: 739552

    As the carry and protective gear of the modern war fighter increases, the burden on the human body will necessarily increase. In our present TALOS MkIII project, we are developing lower body augmentation to preserve speed and agility while bearing this weight. Yet we cannot ignore the impact of this weight on the upper body: in this project we propose to develop an upper body exoskeleton with p ...

    STTR Phase II 2015 Department of DefenseSpecial Operations Command
  10. Botnet Analytics Appliance (BNA)

    SBC: MILCORD LLC            Topic: HSB061008

    Recent reports indicate the activity of more than 6,000 botnet C and C servers. 70 million zombies are responsible for 80 percent of SPAM. Given the exponential growth of the botnet threat, the security of our nation s cyber infrastructure demand automated botnet activity monitoring solutions. In Phase I, Milcord developed a feasibility prototype of a Bayesian Activity Monitor for Botnet Defense. ...

    STTR Phase II 2007 Department of Homeland Security
US Flag An Official Website of the United States Government